					****	****				
					UNI	T–I				
1.	a)	Test for consistency and solve 5x+3y+7z=4; 3x+26y+2z=9; 7x+2y+10z=5								8M
	b)	Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix							6M	
					C)R				
							Γ1	1	27	
2.		Verify Cayley-H	amilton th	neorem	for the m	natrix A =	= 3	1	1 and hence find A ⁴ .	
		Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1 \end{bmatrix}$ and hence find A ⁴ .								
					UNI					
3.	a)	Find the missing term in the table								
		x 2	3	4	5	6				
		y 45	49.2	54.1	-	67.4				7M
	b)	Find the Cubic polynomial which takes the values. $y(0)=1$, $y(1)=0$, $y(2)=1$ and $y(3)=10$								
					C)R				7M
4.	a)	Find the real root of the equation $x \log_{10} x = 1.2$ by Regula-falsi method correct to								
four decimal places.										7M
	b)	·								
		x 0	2	3	6					
		y -4	2	14	158	<u> </u>				7M
		, ,			UNIT					7 141
5.		Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$,								
	y(0)=1									14M
					C)R				
6.		Apply Fourth order Runge-Kutta Method to find an approximate value of y when $x = 1.2$ in step of 0.1, given that $y' = x^2 + y^2$, $y(1) = 1.5$.								
					UNIT	-IV				
7.	a)	Form the partial differential equations (by eliminating the arbitrary constants and								
		arbitrary function	ns) from		5M					

II B.Tech. I Semester Supplementary Examinations May/June 2022

Mathematics-II

(Common to CE & ME)

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

Hall Ticket Number:

Code: 4GC31

Max. Marks: 70

R-14

Time: 3 Hours

Code: 4GC31

b) Find the half range cosine series for the function f(x) = x, when 0 < x < f hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$

9M

OR

8. Using the method of separation of variables, solve

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 where $u(x,0) = 6e^{-3x}$

14M

UNIT-V

9. a) If $u = x^2 + y^2$, find harmonic conjugate v(x, y) and write the corresponding complex potential f(z) = u + iv

7M

b) Show that the polar form of Cauchy's Riemann equations are

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial_{u}}, \frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial_{u}}$$

7M

OR

10. Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$ be an analytic function

14M