Code: 4GC31

II B.Tech. I Semester Supplementary Examinations August 2021

Mathematics-II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the values of λ for which the equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0 ;(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0 ; 2 x+(3 \lambda+1) y+3(\lambda-1) z=0$ are consistent and find the ratios of $x: y: z$ when λ has the smallest of these values. What happens when λ has the greatest of these values?

OR

2. Find the characteristic of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$ and hence find its inverse

UNIT-II
3. a) Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.
b) Find the cubic polynomial which takes the following values:

x	0	1	2	3
$f(x)$	1	2	1	10

OR
4. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using (i) Trapezoidal rule, (ii) Simpson's $1 / 3$ rule (iii) Simpson's $3 / 8$ rule.

UNIT-III

5. Employ Taylor's method to obtain approximate value of y at $x=0.2$ for the differential equation $d y / d x=2 y+3 e^{x}, y(0)=0$.Compare the numerical solution obtained with the exact solution.

OR

6. Using Runge-Kutta method of order 4, find y for $x=0.1,0.2,0.3$ given that $d y / d x=x y+y^{2}$, $y(0)=1$. Continue the solution at $x=0.4$ using Milne's method.

UNIT-IV

7. Obtain the Fourier series for $f(x)=x$ in the interval $-\pi<x<\pi$

OR

8. Find the half range sine and cosine series of $f(x)=x$ in $0<x<2$

UNIT-V

9. Determine p such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytic function

OR

10. Evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where c is $|z|=4$

II B.Tech. I Semester Supplementary Examinations August 2021

Strength of Materials

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the stress strain relations in 1, 2 and 3 dimesional system?
b) Derive the expression for the analysis of uniformly tapered circular rod?

OR

2. Derive the expression for volumetric strain of a rectangular bar subjected to three forces in mutually perpendicular directions?

UNIT-II

3. Draw the shear force and Bending moment diagram, for the beam shown below?

OR

4. A beam of span 6 m which is simply supported at its edges subjected to concentrated loads of 10 KN and 20 KN at a distance of 2 m and 5 m respectively from left support, with an overhanging span of 2 m from its right support subjected to UDL of $2 \mathrm{KN} / \mathrm{m}$ at its overhanging span. Determine the maximum bending moment and shear force.

UNIT-III

5. A rolled steel joist of I section has top flange: $200 \times 10 \mathrm{~mm}$, bottom flange : $150 \times 10 \mathrm{~mm}$, thickness of web 10 mm and overall depth : 400 mm . Find the maximum shear stress across the section if it is subjected to a shear force of 150 KN . Also, sketch the shear stress distribution across the cross section.

OR

6. An I-Section beam $340 \mathrm{~mm} \times 200 \mathrm{~mm}$ has a web thickness of 10 mm and flange thickness of 20 mm . It carries a shear force of 120 KN . Sketch the shear stress distribution across the section.

UNIT-IV

7. Determine the maximum deflection of a cantilever beam subjected to uniformly distributed load over the entire span?

OR
8. A girder of uniform section and constant depth of 400 mm is freely supported over a span of 5 m . Calculate the deflection at four quarter junction points(i.e. $x=1.25 \mathrm{~m}, 2.5 \mathrm{~m}$ and 3.75 m) using moment area method for a uniformly distributed load on it such that the maximum bending stress induced will not exceed $120 \mathrm{~N} / \mathrm{mm} 2$. Take $\mathrm{E}=2 \times 105 \mathrm{~N} / \mathrm{mm} 2$.

UNIT-V

9. Derive the expression for maximum shear strain theory and maximum shear stress theory of failure.

OR
10. A bolt is subjected to an axial pull of 20 KN together with a transverse shear force of 12 KN . Elastic limit for the material in tension $250 \mathrm{~N} / \mathrm{mm} 2$, Factor of safety is 3 and Poisson's ratio is 0.3.Determine the diameter of the bolt according to a) Maximum principal stress theory and b) Maximum strain energy theory.

