						P-1/	
Hall Ticket Number :							

Code: 4G633

II B.Tech. I Semester Supplementary Examinations October 2020

Fluid Mechanics

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- a) U-tube manometer containing mercury was used to find the negative pressure in the pipe containing 1. water. The right limb was open to the atmosphere. Find the vaccum pressure in the pipe if the difference of mercury level in the two limbs was 100mm and height of water in the left limb from the centre of the pipe was found to be 40 mm below.
 - b) What is Pascal's law? Also prove the same.

OR

Define total pressure and centre of pressure. Also derive the expressions for the same for an inclined 2. immersed surface.

UNIT-II

- a) Explain the types of flows. 3
 - b) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20cm diameter pipe is 2 m/s.

OR

- 4. a) State and prove the Bernoulli's Equation.
 - b) A 300 mm diameter pipe carries water under a head of 20 m with a velocity of 3.5 m/s. If the axis of the pipe turns through 450 find the magnitude and direction of the resultant force at the bend.
- 5. a) Explain major and minor energy losses.
 - Derive expressions for calculating loss of energy in a pipe flow during sudden expansion in the pipe and b) sudden contraction in the pipe.

OR

- a) Differentiate pipes are in parallel and series. 6.
 - b) Derive Darcy-Weisbach equation for turbulent flows.

UNIT-IV

UNIT-III

- Derive an expression for coefficient of discharge by using venture meter. 7. a)
 - A rectangular notch of crest width 0.4 m is used to measure the flow of water in a b) rectangular channel 0.6m wide and 0.45m deep. If the water level in the channel is 0.225m above the weir crest, find the discharge the channel. For the notch in assume cd=0.63and take velocity of approach into account

OR

Derive Hagen-Poiseullie equation from basics. 8.

UNIT-V

Water is flowing through a pipe of diameter 30 cm at a velocity of 4m/s. Find the velocity of oil flowing in 9. another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take 'G' of oil as 0.8.

OR

- 10. What is dimensional analysis? Explain Buckingham's pi theorem. a)
 - Explain Dimensionless numbers. b)

od	R-14
	e: 4G631
	II B.Tech. I Semester Supplementary Examinations October 2020
	Strength of Materials-I (Civil Engineering)
M	ax. Marks: 70 Time: 3 Hours
	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)
a)	Draw the stress strain diagram for mild steel and explain the salient points.
b)	A rod of diameter 30 mm and length 400 mm was found to elongate 0.35 mm when it was
- /	subjected to a load of 65 kN. Compute the modulus of elasticity of the material of this rod.
a)	A steel rod of 50mm diameter is enclosed by a copper tube of 50mm external diameter and
	25mm internal diameter. The ends are closed by rigid metal plates. If the temperature of the
	assembly is raised by 600C, find the stresses in the steel and copper rods and the combined expansion of the assembly.
	Take ES = $2 \times 105 \text{ N/ mm}2$ and EC = $1 \times 105 \text{ N/ mm}2$;
	$S = 1.2 \times 10^{-5} \text{ per } 0C \text{ and } C = 1.6 \times 10^{-5} \text{ per } 0C$
b)	Define strain energy? Derive the formula for the strain energy when a gradual load is
-	applied?
	UNIT–II
	Draw shear force and bending moment diagram for the beam shown below. Mark all salient values on them. Comment on point of contra flexure.
	10-kN/m
	OR
	A simply supported beam AB of span 10 m is subjected to a uniformly distributed load of
	30KN/m over the left half of span and a concentrated moment of 50 KN-m acting at a distance of 6 m from left support A. Draw the shear force and bending moment diagrams. Also find the
	position and magnitude of maximum bending moment.
	A simply supported beam of rectangular cross section 100mm x 200mm deep carries an $udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in$
	A simply supported beam of rectangular cross section 100mm x 200mm deep carries an udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam?
	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied
	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR
a)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending
a) b)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm ₄ .
b)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum
,	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm4. UNIT-V The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400
b)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm4. UNIT-V The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400 N/mm2. Find the normal and tangential stresses in the two planes which are equally inclined
a)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm4. UNIT-V The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400 N/mm2. Find the normal and tangential stresses mentioned above
a)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of $L/2$ from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm4. UNIT-V The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400 N/mm2. Find the normal and tangential stresses mentioned above Explain the Mohr's circle of stresses
b)	udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR Sketch the shear stress distribution for a circular cross section of dimension 'd What are the assumptions in theory of bending UNIT-IV A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of <i>L</i> /2 from fixed end A. Using double integration method, determine the deflection at the free end C OR A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm4. UNIT-V The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400 N/mm2. Find the normal and tangential stresses mentioned above

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

	На	I Ticket Number :								
		R-14	I							
		II B.Tech. I Semester Supplementary Examinations October 2020								
		Surveying								
		(Civil Engineering)								
	Mo	IX. Marks: 70 Time: 3 Hours								
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)								
		UNIT–I								
1.	a)	Define Surveying? Explain primary divisions of surveying.	7M							
	b)	Classify the surveying based on purpose and instruments used.	7M							
		OR								
2.		Explain the principle, working and uses of optical square with neat sketch.	14M							
3.	a)	UNIT-II Define and explain the terms contour interval and horizontal equivalent?	7M							
З.	a) b)	The consecutive readings taken during a levelling operation are as follows:0.685, 1.315, -	7 111							
	0)	1.825, - 0.635, 1.205, 1.235, 2.631, 1.355, - 2.015. The instrument was shifted after the third								
		and sixth readings. The third reading was taken on a benchmark of assumed elevation								
		100.000m. Find the reduced levels of all other points.	7M							
	、	OR								
4.	a)	Explain the method of a computation of volume of earthwork from the contour plan.	7M							
	b)) An embankment has side slopes 1.5:1 and is level in the transverse direction. The depths at the centre at 20-m intervals are 1.8m, 2.4m, 3.0m, and 3.6m. Find the volume by trapezoidal formula.								
5.		How many fundamentals lines are there in theodolite and what are they? Explain briefly the temporary adjustments of theodolite?	14M							
		OR	14111							
6.		Explain the main parts of a theodolite with neat diagram?	14M							
0.										
		UNIT-IV								
7.	a)	State the advantages and disadvantages of plane tabling in survey.	7M							
	b)	Explain the methods in practice to solve a three point problem.	7M							
		OR								
8.		Derive the condition of Anallactic lens for horizontal angles.	14M							
0		UNIT-V Draw a simple circular curve, write their elements and derive the formulas of each element?	1 / 1 / 1							
9.		OR	14M							
10.	a)	What is meant by Degree of curve? Derive its relationship with radius of curve?	9M							
	b)	Explain the principle of EDM.	5M							

		Il Ticket Number :													R-14]
	Coc	le: 4GC31		4.0.0	<u></u>	ر مام س										
		ll B.Tech. I Se	mes	sier		•			cs-l		anc		JCIO	oer⊿	2020	
									E & I							
	Mc	xx. Marks: 70 Answer all five uni	ts hv	cho	osina	n one	e au	estio	n fro	m ec	nchi	init (5 x 14		ne: 3 Hours	
			13 0 9	CIIC	0011		****	*****				51 III (UNI	,,,	Mana j	
							NIT–									
•	a)	Test for consistency	/ and	solv	e 5x-	+3y+7	7z=4	; 3x+:	26y+2	2z=9	; 7x+	2y+1	0z=5			8M
	b)	Show that the Eiger	n valu	ies o	f diag	gonal	mat	rix ar	e just	the	diago	onal e	elemer	nts of	the matrix	6M
				۲ı	2	2 (ס	R								
				$1 \\ 2$	2 4	3	2									
	a)	Find the rank of the	matr	ix - 3	2	1 3	by	redu	cing i	into E	Eche	on fo	orm			
		Find the rank of the		6	8	7 5	5									7M
	b)	Find the Eigen value						_	_	•						
	,		05 01		Jenve		5017		1 2_							7M
	-)					L	NIT-I		_		(a)	_	(\mathbf{a})	0		
	a)	Find the Cubic point (2) 10	olyno	mial	whic	ch ta	akes	the	value	es.	y(0)	=1,	y(1)=	=0,	y(2) = 1 and	
	L)	y(3)=10														7M
	b)	Using Newton-Raph	nson	Meth	nod, c	comp	ute ∧ O		corre	ct to f	our	decin	nal pla	ces		7M
		Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$	oy us	ing			•									
															14M	
				<i>c</i> 1		L	NIT-I			,					1 .	
		Using Euler's Met				аррі	oxim	ate	value	e of	ус	orres	ponain	ig to	x = 1, given	
		$\frac{dy}{dx} = x + y$ and $y =$	IWN	en x=	=0.											14M
				•			0									
		Use Runge-Kutta m	etho	d to e	evalu	[y(0	.2)gi	ven	that y	y' = x + y	у, у	(0) = 1	14M
		Find the half range	sina ·	and	nosin		IIT-I		r) - 1	c in () < r	- 2				
		This the hair range			505111	6 361	0 0		x) — x		$) < \lambda$	< 2				14M
	a)	Find the Fourier ser	ies e	xpar	ision	for <i>f</i>			in 0<	< <i>x</i> <	2 <i>f</i>					10M
	b)	Form the partial dif										trary	consta	ants a	and arbitrary	10101
		functions) from $z =$	<i>a x</i> +	b y +	$a^{2} +$	1										4M
	-)			<i>c</i> (\	I	<u>'-TIV</u>									
	a)	Apply C-R condition	is to	f(z)	$) = z^{2}$	and	show	/ that	the f	uncti	on is	anal	ytic ev	erywr	nere.	7M
	b)	Evaluate $\int_{c} \frac{1}{(z-1)(z-1)}$	$\overline{(z-3)}$	$\overline{3}$	^z with	C:	z =	2 usi	ng Ca	auch	∕'s Ir	itegra	al Form	nula		7M
							0		1				(.)		
		Determine p such	that	the	fun	ction	f($z) = -\frac{1}{2}$	$\frac{1}{2}\log$	$(x^2 +$	y^2)-	+ <i>i</i> tar	$n^{-1}\left(\frac{px}{v}\right)$	be	an analytic	
		function							-					/		14M
							*	* *								