Hall Ticket Number :					[
Code: 4G233		· · · ·	 · · ·		R-14
	` +			 L	.0010

II B.Tech. I Semester Supplementary Examinations May 2018 Electrical Circuits-I

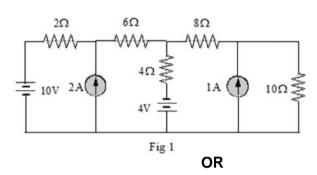
(Electrical and Electronics Engineering)

Max. Marks: 70

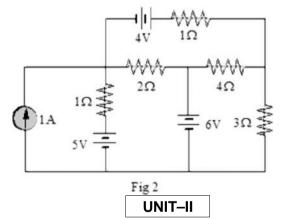
Time: 3 Hours

14M

14M


7M

7M

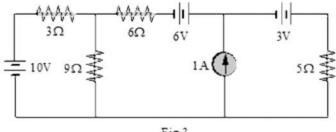

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

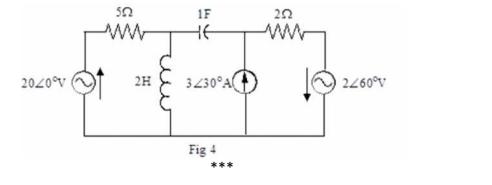
1. Simplify the circuit of fig 1 into one voltage source in series with a resistor and find the current in 10 ohms resistor using source transformation technique.

2. Determine the current through 3 ohms resistor in fig 2 using node voltage analysis.

- **3.** a) Explain the advantages of AC supply
 - b) A series circuit consisting of a resistor of 10 ohms and an inductance of 100mH is connected across a 200V, 50Hz, single phase ac supply. Determine the current drawn, real power and reactive power.


OR

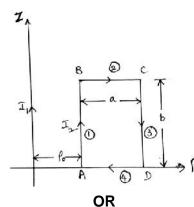
- 4. a) A resistance of 15 ohms is connected in series with an inductance of 200mH and a capacitance of 100μF. Determine the resonant frequency and bandwidth.
 7M
 - b) Define bandwidth and Q factor of a resonant circuit. Derive the expressions for bandwidth and Q factor for a series resonant circuit.
 7M


5. State and explain Superposition theorem with an example 14M

OR

6. In the circuit of fig 3, find the power consumed by 5 ohms resistor using Thevenin's theorem.

		UNIT-IV	
7.	a)	Define ABCD parameters of a 2 port network	7M
	,		
	b)	Derive the relations between Z and hybrid parameters	7M
		OR	
8.		Two, 2 port networks are connected in cascade. The Z parameters of the networks are defined by:	
		Network 1: $V_1 = 8 I_1 + 3 I_2$ and $V_2 = 4 I_1 + 7 I_2$	
		Network 2: $V_1 = 2 I_1 + I_2$ and $V_2 = I_1 + 2 I_2$	
		Determine the ABCD parameters of the overall network	14M
		UNIT-V	
9.		A magnetic ring comprises of 3 parts:	
		Part 1: 20 cm length, 30 cm ² cross sectional area, relative permeability = 1000	
		Part 2: 40 cm length, square cross section of 4 cm side, relative permeability = 1200	
		Part 3: Air gap of 2 mm length, 23 cm ² cross sectional area	
		A coil of 800 turns is wound uniformly on the ring. Determine the current required to produce a flux of 2 mWb in the airgap.	14M
		OR	
10.	a)	Define cut-set. Explain the procedure of obtaining the cut-set matrix	7M
	b)	Construct the dual network of the circuit shown in fig 4	



7M

Hall ⁻	Tick	et Number :													
Code:	4G2	934								<u></u>				R-14	
couc.		IB.Tech. IS	eme	este	r Su	ople	eme	ntar	ту Ех	ami	nati	ions	Мау	/ 2018	
					lect		-								
Max. Ar	-		(Elec s by c							•		• •	5 x 14	Time: 3 Hc = 70 Marks)	ours
							ι	JNIT-	-1						
1.	a)	Define elect and electric					Derive	e the	rela	tion	betw	een	electr	ic flux density	/ 7N
	b)	Calculate												ed by (i) poin ² on x-axis	t 7N
								OF	2						
2.		State and ex	xplain	n pro	cedu	re fo	or app	olying	g Gai	uss la	aw.				5N
		Deduce the charges app	•			6.65	r due i ⊂	e to p	point	char	ge, l	ine c	charge	e and surface	e 9N
							U	INIT-	-11						
3.	a)	Prove that v the direction		•	oole i	s pla	iced i					c field	d it tei	nds to align to	0 7№
	d)	Two dipoles (0,0,-2) and along z-axis	(0,0,3	•				sk n	Cm	and s entia)()	Cm a rigin		t points ated a the uni ^t vecto	
			•					OF	R						, 10
4.	a)	Find the cap	oacita	nce	of a	sphe	rical	capa	acitor						7N
	b)	Find the pot at =10° and					r the	field	of tw	o rac	dial c	ondu	cting	planes v=50∖	/ 7N
E		Deduce the	OVDE	osci	on fo	rmo		NIT-		anci		2 00	int du	e to a square	
5.		shaped curr	•				gnet	ic ne		ensi	y at	α μυ	in uu	e to a square	, 14№
		·		,	Ŭ			OF	R						
6.		Apply Ampe				1.44	100 million (1990)		•	ossib	le re	gion	s due	to an infinite	e 14№

UNIT–IV

7. A rectangular loop carryin rent lz is laced par o ar nfinitely long filamentary wire carrying current l₁ as shown in filamentar. Show that force experienced by the loop is $\vec{F} = \frac{-\mu_0 I_1 I_2 b}{2\pi} \left[\frac{1}{\rho_0} - \frac{1}{\rho_0 + a}\right]$ is the unit vector along ρ -axis.

14M

5M

- 8. a) Derive the expression for self inductance of a toroid.
 - b) A very long solenoid with 2x2 cm² cross section has an iron core (μ_r=1000) and 4000 turns/meter. If it carries a current of 500mA, find (i) its self inductance per meter (ii) the energy per meter stored in its field.
 9M

9. a) Briefly describe dynamically induced emf with necessary expressions 6M

 b) State the laws from which Maxwell's I, II, III and IV laws are derived and express them in both differential and integral form.
 8M

OR

10. a) A stationary 10 turn square coil of 1m side is situated with its lower left corner coincident with the origin and with sides x_1 and y_1 along x and y axes respectively. If magnetic field B is normal to the plane of the coil and has its amplitude given by $B_o = \sin\left(\frac{\pi x}{x_1}\right)\sin\left(\frac{\pi y}{y_1}\right)$ tesla, determine the rms value of emf induced in the coil if B varies harmonically at a frequency of 1kHz. 14M

Hall ⁻	Tick	et Number :													
Code:	4 G 2	232								J			1	R-14	
		B.Tech. S	eme	este	r Suj	ople	eme	ntar	y Ex	ami	nati	ions	Мау	/ 2018	
					Elec										
Max	Ma	rks: 70	(Ele	ctric	al a	nd E	lect	roni	cs Er	ngine	eerir	ng)		Time: 3 Hou	rc
	-	er all five units	s by a	choc	osing		•		fron	n ead	ch ui	nit (ł	5 x 14		15
						:	*****	UNI	T–I						
1.	a)	Explain why	equa	alizei	r con	nect	ions	are u	ised	in la	o wir	nding	s and	dummy coils	
		are sometim	ies u	sed i	n wa	ve w	indin	g?							6M
	b)	Define pole illustrate the	•		•		•				pitch	n, CO	mmuta	ator pitch and	8M
	OR														
2.	a)	Elucidate the	e prir	nciple	e of e	nerg	y cor	nvers	sion o	of ele	ctror	nech	nanica	l system?	7M
	b)	Write energy	bala	nce e	equat	ion ii	n eleo	ctrom	echa	nical	enei	rgy c	onvers	sion devices?	7M
								UNI							
3.	a)	Derive an ec	•												7M
	b)	•	runs 50V. ⁻	at 50 The a)0rpn armat	n, su ture i	pplie resist	s a l tance	oad e is 0.	of 12 .24	.5 and	resis field	tance resista		7M
								OR	1						
4.	a)	Explain the r	react	ance	volta	age i	n cas	se of	a DC	c ma	chine	? ?			6M
	b)	at 1200 rpm	. If a nce c	rmation of ea	ure c ch a	urrer rmat	nt is [.] ure c	160A coil is	, thic 6 0.1	knes	s of	brus	h is 1	eter and runs 2mm and the average emf	8M
								UNIT	 111						
5.	a)	"External cl compared to								-		e fo	r a sh	nunt machine	8M
	b)	resistance o	f 0.0	5ohn	ns ar	nd 0.	04 ol	hms	and	field	resis	tanc	es of	V, armature 20 ohms and How do they	6M
								OR	1						
6.	a)	State four re	asor	ns for	ope	rating	g dc	gene	rator	s in p	baral	lel?			5M
	b)	Explain the generators?		ing p	rincip	ole o	f equ	alize	r bar	in p	aralle	el op	eratio	n of dc series	9M

			<u> </u>
		UNIT–IV	
7.	a)	Explain the significance of back emf in a DC motor?	6M
	b)	Explain the working principle of a starter suitable for high speed control of a dc shunt motor with neat sketch	8M
		OR	
8.	a)	Sketch the torque vs current characteristics of dc shunt and dc series motor with relevant torque equation?	8M
	b)	List the applications of dc shunt, dc series and dc compound motors?	6M
		UNIT–V	
9.	a)	Examine the back to back test in detail with advantages and disadvantages?	8M
	b)	Hopkinson's test on two shunt machines gave the following results for full loads line voltage 250V, line current excluding field currents 50A, motor armature current 380A, field currents of generator and motor are 5A and 4.2A. Calculate the efficiency of each machine. Armature resistance of each machine is 0.02	CM
		ohm	6M
		OR	
10.	a)	Explain the procedure to find the stray losses of dc shunt machine.	8M
	b)	List the advantages of Indirect test over Direct test?	6M

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 4G231

R-14

II B.Tech. I Semester Supplementary Examinations May 2018

Switching Theory and Logic Design

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- 1. a) i. Find the value of x in the number $(786.983)_{10} = (x)_8$.
 - ii. Convert the binary number 11001.001011 to decimal.
 - b) State
 - i. Idempotent Law
 - ii. Involution Law
 - iii. Absorption Law

OR

- 2. a) i. Convert (4057.06)₈ to binary
 - ii. Perform subtraction using 10's complements : 597-239.
 - b) What is self complementary code ? Give Examples.
 - c) What is the Hamming code? How is the Hamming code word tested and corrected?

UNIT-II

- 3. a) Realize EX-OR gate using NAND gates.
 - b) Simplify the logic expression Y= ΠM (0,1,2,3,4,7) using K-map and realize using basic gates

OR

- 4. a) Using the Quine-McCluskey method of tabular reduction minimize the given function $f(A,B,C,D) = \Sigma m(0,1,5,7,8,10,14,15)$. and realize using basic gates.
 - b) What are primeimplicants and essential primeimplicants ? Explain

UNIT-III

- 5. a) Design a combinational circuit using PAL for the following function y(A,B,C,D) = (0,2,3,4,5,6,7,8,10,11,15)
 - b) Draw the circuit diagram of master-Slave JK Flip-Flop and explain operation with help of Truth-Table.

OR

- 6. a) Implement the following multiple output functions using PROM $F_{1}= m (0, 1, 4, 7, 12, 14, 15) F_{2}= m (1, 3, 6, 9, 12) F_{3}= m (2, 3, 7, 8, 10)$ $F_{4}= m (1, 3, 5)$
 - b) Draw the circuit diagram of a J-K flip flop and explain its operation.

UNIT-IV

- 7. a) Design a synchronous mod-6 counter using JK flip-flop.
 - b) Implement a 4x16 decoder using 2x4 decoders.

OR

- 8. a) Convert JK Flip-Flop into SR Flip-Flop.
 - b) Design a mod-10 Asynchronous counter using T-flip-flops.

UNIT-V

- 9. a) Draw the ASM chart for the following state transitions, start from the initial state T1, then if XY = 00 go to T2, if XY = 01 go to T3, if XY = 10 go to T1, otherwise go to T3.
 - b) Explain the capabilities and Limitations of Finite state machine.

OR

- 10. a) Compare Mealy model and Moore model.
 - b) For the state table of the machine given below find the equivalent partition and a corresponding reduced machine in standard form.

PS	NS	6/Z	
F0	X=0	x=1	
A	D/0	H/1	
В	F/1	C/1	
С	D/0	F/1	
D	C/0	E/1	
E	C/1	D/1	
F	D/1	D/1	
