Hall Ticket Number :

Code: 4G233

II B.Tech. I Semester Supplementary Examinations November 2019

Electrical Circuits - I

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

R-14

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

1. a) Find the total power dissipated in the circuit shown in the figure.

(All resistances are in ohms).

7M

b) Find the value of the voltage source V_s that delivers 2 Amps current through the circuit as shown in figure.

7M

2. For the bridge network shown in figure below by using suitable delta – star transformations, Find The value of the single equivalent resistance that replaces the network between terminals A and B. (i) The current supplied by the 52 V source. (ii) The current flowing in the 8 resistor.

14M

3. For the periodic waveforms shown in figure below, determine: (i) Average value over half cycle. (ii) Frequency. (iii) RMS value. (iv) Form factor. (v) Peak factor

14M

7M

7M

- 4. a) Define the Q factor and derive an expression showing the relation between Q -factor, Band width and selectivity of frequencies at resonance.
 - b) Show that for a series RLC circuit $f_r = \frac{f_r}{\sqrt{f_1}} \frac{f_2}{f_2}$ f = where f_r resonant frequency and f_1 and f_2 are half power frequencies.

Code: 4G233

UNIT-III

5. a) Find the current in the 6 ohm resistor shown in circuit diagram, using superposition theorem.

7M

b) State and explain Maximum power transfer theorem with an example.

7M

OR

6. a) Verify the reciprocity theorem for the given circuit shown below.

7M

b) Explain Millman's Theorem with a suitable example.

7M

UNIT-IV

7. a) Obtain the Y and Z parameters for the two port network shown in below figure.

7M

a) Obtain the relation between Hybrid and ABCD parameters.

7M

OR

8. Determine the [Z] and [Y] parameters of the following two port network based on two-port interconnection technique.

9. a) Two coils connected in series-aiding fashion have a total inductance of 250mH. When connected in a series-opposing configuration, the coils have a total inductance of 150 mH. If the inductance of one coil is three times the other, find L₁, L₂ and M. What is the coupling coefficient?

7M

14M

b) Distinguish between self-inductance and mutual inductance.

7M

OR

10. a) The two coils are connected in Parallel and they have self-inductance of 40mH and 10mH respectively. The total inductance of the circuit is found to be 50 mH. Determine: (i) The mutual inductance between the two coils. (ii) The coefficient of coupling.

7M

b) Develop an expression for equivalent inductance of two coupled coils connected in parallel with mutual inductance.

7M

	Hall	Ticket Number :											_
E	Code	e: 4G234		l.								R-14	
		II B.Tech. I Sem	ester Si	upple	ment	ary E	zan	ninc	ations	No	ovem	ber 2019	
				lectro	-								
	Mar	x. Marks: 70	Electric	cal an	d Elec	etroni	CS E	ngin	eerin	g)		Time: 3 Hours	
		Answer all five units	by cho	osing c	ne qu	estio	n fror	n ec	ach ur	nit (5 x 14		

1.	a)	State and explain v	ector fo	rm of C	UNIT		M2						4M
	1. a) State and explain vector form of Coulombs law?b) Derive the expression for Electric Field intensity and potential at a point P which is											int P which is	4111
	situated h meter away from the disc along its axis. The disc is charged uniformly with												
	a charge density of $_{s}$ C/m ² .												
	OR OR												
2.		Prove that E=- V											6M
	b)	Derive Maxwell's F	irst equa	ation as			the e	lectro	ostatio	s us	sing G	auss's law?	8M
3	3. a) Derive the expression for the energy stored in a parallel plate capacitor 8M												
, , , , , , , , , , , , , , , , , , , ,													OIVI
	b) Determine the capacitance of a capacitor consisting of two parallel metal plates of 30 cm X30 cm surface area, separated by 5 mm gap in air. What is the total energy											•	
		stored by the capa		•		•	_	•				•	
		is the energy densi	ty?										6M
						R							
4.	,	Derive the express		•	•								7M
	b)	Derive Laplace Equ	uation fro	om fun									7M
5.	a)	Derive an expressi	on for m	agnetic	UNIT-		itv at	t anv	point	on i	the axi	s of a circular	
0.	u)	current carrying co		agnout			nty an	. u ,	Pomit	0		o or a orrogial	7M
	b)	State and explain E	Biot-sava	ırt's lav									7M
_	,					R							
6.	a)	Derive an express solenoid?	sion for	magne	etic fie	ld int	ensit	y at	any	poir	nt on	the axis of a	
	b)		00 turno	مرما م	wath of I	150	0.000	0 50	م مینام	٠.	2 000		7M
	b)	A solenoid has 300 current of 100 mA.		•						ı a=	2 CIII	and cames a	7M
				[UNIT-		(0,0,		•				/ IVI
7.	a)	Derive the express	ion for T	orque			loop	plac	ed in	a m	agneti	c field.	7M
	b)	Derive the boundar	ry condit	ions fo	r magn	etic f	ield iı	ntens	sity an	d flu	ıx den	sity.	7M
OR													
8.	a)	Derive the express	ion for e	nergy s	stored	in a m	nagne	etic f	ield.				7M
	b)	Derive the self-indu	uctance	of a so	enoid								7M
_	,				UNIT								
9.		State and explain F	•				•				:	iald about his	7M
	b)	A circular loop of $\overline{B} = 0.5\cos 377t(3a_y)$							•		ın a ı	ieia given by	
		B = 0.30083771(3ay)	+4az) 16	sia. Fii		enn n R	luuce	eu III	li le ic	ωp.			7M
10.	a)	Explain the modif	ications	of Ma	_		uatior	ns fo	or tim	e v	arying	electric and	
		magnetic fields?				•					. 3		7M
	b)	Find the displace	ment cu	rrent v	within	а ра	rallel	plat	te ca	oaci	tor wh	nere =100 o,	
		A=0.1m ² ,d=0.05mr	m and th	e capa		•	is 10	00 si	n2000	t	volts.		7M
					*	**							

Hall	Tick	et Number :											
Code	e: 5G	3539		R-15									
	II B	Tech. I Semester Supplementary Examinati Fluid Mechanics and Hydraulic A (Electrical and Electronics Engine	Nachines	ber 2019									
		orks: 70 Ver all five units by choosing one question from each ********* UNIT-I		Time: 3 Hou = 70 Marks)	Jrs								
1.	a)	Write briefly about different types of Pressure measure	uring devices		7M								
	b)	A fan delivers 4 m ³ of air per second at 20°C and 1.25 bar. Assuming molecular weight of air as 28.97, calculate the mass of air delivered. Also determine the density, specific volume and specific weight of the air being											
		delivered.											
_		OR											
2.	a)	What is the difference between U-tube differential manometer and inverted U-tube differential manometer? Where are they used?											
	b)	in diameter and 300 mm long, The clearance is filled with oil having a kinematic viscosity of 0.005 m²/s and specific gravity 0.90. If the shaft moves											
		axially at 0.50m/s. find the resistance offered by the oil on the shaft. UNIT-II											
3.	a)												
	b)	Derive friction factor for the flow through the circula	cy Weisbach										
		equation? OR			7M								
4.	a)												
	b)	State the momentum equation and mention some of its	s engineering a	applications	7M								
		UNIT-III											
5.	a)	A jet 200 mm diameter moving at a velocity of 20 m normally on a series of flat vanes mounted over a vanes is 8 metres per second, find (i) the force exerted the work done by the jet on the wheel per second, and	wheel. If the vo d by the jet on	elocity of the the wheel,(ii)	7M								
	b)	Derive an expression for the force exerted by a jet one end tangentially when the plate is symmetrical.	striking the cu	rved plate at	7N								

Code: 5G539

6. a) Explain hydroelectric power plant working principle with neat sketch. 7M 7M b) Discuss various type of Draft tubes with neat sketch. **UNIT-IV** 7. a) A Kaplan turbine works under a head of 60m at a speed of 145rpm utilizing 175 m³/s of water. Diameter of runner and hub are 5.60m & 3.20m. Turbine develops 82500 kW. Find i) flow ratio ii) speed ratio iii) overall efficiency iv) specific speed. 7M b) Explain what is meant by unit quantities in turbines. Derive expressions for unit speed, unit discharge and unit power of a turbine. 7M OR 8. a) What is the importance of a draft tube in a Francis turbine? Discuss different types of draft tubes. 7M b) A turbine is to operate under a head of 25 meters at 200 rpm. The discharge is 9 m³/sec. If the turbine efficiency is 90% determine: (i) specific speed of the turbine (ii) power generated (iii) performance under a head of 20 meters. Also state the type of the turbine. 7M UNIT-V 9. a) List out necessary precautions against cavitation in centrifugal pumps. 7M b) Explain the working of reciprocating pump with neat sketch. 7M OR 10. a) Draw and discuss characteristic curves of a pump. 7M b) A double acting reciprocating pump having piston area 0.1m has a stroke of 0.30m long. The pump is discharging 2.4 m³ of water per minute at 45 rpm through a height of 10 m. Find the slip of the pump and power required to drive the pump. 7M

Hall ⁻	Γick	et Number													
R-14								R-14							
Il B.Tech. I Semester Supplementary Examinations November 2019 Switching Theory and Logic Design (Electrical and Electronics Engineering)															
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ***********************************											Jrs				
	1 a) Convert the following numbers:														
1.	a)	Convert the following numbers:													
		i. (4567) ₈ to base 10.													
		ii. (11001101.0101) ₂ to base 8 and base 4.													
		iii. (53.1575) ₁₀ to base 2.											8M		
	b)	i. Explain error detection codes. What is the drawback of error detection codes?													
	ii. Construct even parity 7 bit hamming code for the message 0100.												6M		
	OR														
2.	a)	State dual	ty the	orem	. List	Boo	lean	laws	and	their	dua	ls.			6M
	b)	Simplify th	e follo	wing	Воо	lean	funct	ions	to m	inimu	ım n	umbe	er of lit	erals.	
		i. $F = ABC + ABC' + A'B$.													
		ii. F=	(A+B))' (A'+	⊦B').										8M
								UN	IT–II						
3.	a)	Define prin	ne imp	licant	and	esse	ntial	prime	e imp	lican	t with	exar	nple u	sing K-map.	7M
	b)	Find all the prime implicants for the following Boolean function using K-map and determine which are essential?													
														7M	
		OR													
4.	a)	Simplify the following Boolean expressions using K-map and implement them using NOR gates:													
		i. $F(A, B, C, D) = AB'C' + AC + A'CD'$.													
		ii. F (\	۷, X, ۱	Y, Z)	= W	'X'Y'	Z' + V	VXY'	Z' + '	W'X'	YZ +	WX'	YZ.		8M
	b)	Simplify the following Boolean function for minimal SOP form using K-map and implement using NAND gates.													
		F(W,X,Y,Z) = (1,3,7,11,15) + d(0,2,5).											6M		
		UNIT-III													
5.	a)	Implement	full a	dder i	using	g dec	oder	and	OR (gates	S.				7M
	b)	Design a generates							•				•	number and umber	7M
OR															
6.	a)	Explain the	genera	al con	nbina	tiona	I PLD	conf	igurat	tion w	vith s	uitabl	e block	diagram.	7M
	b)	Give the log	jic imp	lemer	ntatio	n of a	a 32 x	4 bit	& 8 <i>x</i>	4 bit	t RON	∕l usir	ng suita	able decoder	7M
	,	`	•										-		

Code: 4G231

UNIT-IV

7. a) Design a mod-6 synchronous counter using T-flip flop.

7M

b) Draw the circuit of a negative edge triggered JK Flip-Flop with active high. Explain its operation with the help of truth table.

7M

OR

8. a) Design a sequential circuit with two D-Flip-Flops A and B and one input x. When x=0, the state of the circuit remains the same. When x=1, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00 and repeats.

6M

b) Design Mod-12 synchronous counter using J-K flip –flops

8M

UNIT-V

9. a) Discuss mealy and Moore machine models of sequential machines.

7M

b) Explain the minimization procedure for determining the set of equivalent state of a specified machine M.

7M

OR

10. a) Explain the salient features of the ASM chart.

10M

b) Draw an ASM chart and state diagram for the synchronous circuit having the following description:" The circuit has a control input 'x', clock and outputs A and B. If x = 1, on every clock edge (rising of falling) the code on BA changes from $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00$ and repeats. If x = 0, the circuit holds the present state".

4M
