Electrical Engineering and Electronics Engineering

(Common to ME, CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. a) Define the following i) Resistance ii) Inductance iii) Capacitance. Also give the V-I relationship for the above elements.
b) Find the equivalent resistance between A \& B terminals.

OR
2. a) Derive the expression for star to delta transformation.
b) Two resistors of each 4 and 2 are connected in parallel across a 10V DC supply. Find the current through each resistor by current division technique.

UNIT-II

3. a) Explain the operation of principle of DC generator.
b) Derive the expression for Torque in a DC Motor.

OR

4. a) Explain the speed control methods of a DC shunt motor.
b) Elaborate about Swinburne's test on dc machine.

UNIT-III

5. A $400 \mathrm{~V}, 10 \mathrm{KVA}, 3-\Phi$ alternator with star connected stator winding has an effective armature resistance per phase of 1.0 . The alternator generates an open circuit voltage per phase is 90 V with a field current of 1.0 A . During the short circuit test, with 1.0 A of field current the short circuit current flowing in the armature is 15A. Calculate
The synchronous impedance B) Synchronous reactance
OR
6. a) Explain the principle of operation of single phase Transformer with neat sketch.
b) Explain Torque-Slip Characteristics of a Three phase induction motor.

> UNIT-IV
7. Explain the operation of Bridge rectifier with relevant diagrams.

OR
8. a) Explain the operation of $\mathrm{P}-\mathrm{N}$ junction diode mentioning its applications.
b) Explain the input and output characteristics of transistor in CE configuration.

UNIT-V

9. Enumerate the applications of dielectric heating and induction heating.

OR

10. a) Describe how voltage, current and time period are measured by using CRO.
b) List the applications of CRO.

Code: 4GC31
II B.Tech. I Semester Supplementary Examinations May 2019

Mathematics-II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$
b) Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix

OR

2. a) Determine the rank of the matrix $\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$ by reducing into Echelon form
b) Investigate the values of λ and so that the equations

$$
2 x+3 y+5 z=9 ; \quad 7 x+3 y-2 z=8 ; \quad 2 x+3 y+\lambda z=
$$

have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions

UNIT-II

3. a) Find a root of the equation $x^{2}-4 x-9=0$ using bisection method correct to three decimal places
b) Find the missing term in the table

x	2	3	4	5	6
y	45	49.2	54.1	-	67.4
OR					

4. a) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$
b) Using Newton-Raphson Method, compute $\sqrt{41}$ correct to four decimal places

UNIT-III

5. Apply Fourth order Runge-Kutta Method to find an approximate value of y when $x=1.2$ in step of 0.1 , given that $y^{\prime}=x^{2}+y^{2}, y(1)=1.5$.

OR

6. Employ Taylor's method to obtain approximate value of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 x+3 e^{x} y(0)=0$. Compare the numerical solution obtained with the exact solution

UNIT-IV

7. Prove that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}},-\pi<x<\pi$.

Hence show that
(i) $\sum \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
(ii) $\sum \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{6}$
(iii) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+---==\frac{\pi^{2}}{12}$

OR

8. Find the half range sine and cosine series of $f(x)=x$ in $0<x<2$

UNIT-V

9. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic everywhere.
b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with $\mathrm{C}:|z|=2$ using Cauchy's Integral Formula

OR

10. a) Using Cauchy's Integral Formula $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ Evaluate where C is Unit Circle.
b) If $u=x^{2}+y^{2}$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$

Code: 4G531

II B.Tech. I Semester Supplementary Examinations May 2019
 Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) A 40 mm cubical block is subjected to shear stress and it is observed that $\mathrm{T}_{\mathrm{e}}=240 \mathrm{~N} / \mathrm{mm}^{2}$. If shear modulus $\mathrm{G}=84 \mathrm{kN} / \mathrm{mm}^{2}$, determine
(i) the modulus of resilience,
(ii) the shear strain at elastic limit and

The total strain energy absorbed at elastic limit?
b) Two aluminum strips are rigidly fixed to a steel strip of section $25 \mathrm{~mm} \times 8 \mathrm{~mm}$ and 1 m long. The aluminum strips are 0.5 m long each with section $25 \mathrm{~mm} \times 5 \mathrm{~mm}$. the composite bar is subjected to a tensile force of 10 kN as shown in fig.a. Determine the deflection of point of point B. $E_{s}=E_{a}=210 \mathrm{kN} / \mathrm{mm}^{2}$

Fig a
OR
2. a) A steel wire rope of a diameter of 10 mm is used for hoisting purpose during construction of a building. If a 50 m long wire rope is hanging vertically and 1 kN load is being lifted at lower end of the wire determine the total extension of wire. Given the specific weight of the rope $=0.06 \mathrm{~N} / \mathrm{cm}^{3}$ and $E=200 \mathrm{kN} / \mathrm{mm}^{2}$?
b) Define and explain the differences between the resilience and toughness briefly?

UNIT-II

3. a) What do you understand by the positive and negative shear force?
b) Draw the shear force and bending moment diagrams for the beam show in fig.b?

Fig b.
OR
4. a) Draw the SFD and BMD for the overhanging beam shown in fig.c indicate the significant values including point of contra flexure?

Fig c
b) For the beam $A C$ shown in fig.d, determine the magnitudes of load P acting at C, such that the reaction at supports $\mathrm{A} \& \mathrm{~B}$ are equal?

UNIT-III

5. a) A Cl beam of unequal I-section with top flange $150 \mathrm{~mm} \times 10 \mathrm{~mm}$, bottom flange $200 \mathrm{~mm} \times 15$ mm and web $275 \mathrm{~mm} \times 10 \mathrm{~mm}$ is supported as a cantilever of length 3 m . What load can be applied at the free end of the cantilever if the tensile stress in the section is limited to 80 $\mathrm{N} / \mathrm{mm}^{2}$, the top flange of the beam comes under tension?
b) Define the modulus of rupture and state its significance?

OR

6. a) A wooden beam of rectangular section $15 \mathrm{~cm} \times 30 \mathrm{~cm}$ is simply supported over a length of 4 m . It carries a UDL of $4 \mathrm{kN} / \mathrm{m}$ throughout its length. What is the maximum shear stress developed in the beam section?
b) A beam is of a circular section of diameter 80 mm . At particular section SF is 40 kN . Draw the shear stress distribution along the depth of the section?

UNIT-IV

7. a) An ISBM 150 rolled steel section is held as a cantilever of length 2 m . A weight of 200 N is dropped at the free end of the cantilever producing an instantaneous stress of $90 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate height from which the weight was dropped and the maximum instantaneous deflection in the cantilever. $\mathrm{I}=726.4 \times 10^{-8} \mathrm{~m}^{4}, \mathrm{E}=200 \mathrm{GPa}$
b) A beam ABCD, 7 m long hinged at A and roller supported at D carries 7 kN load at B and 4 kN / m UDL over $\mathrm{BC}=3 \mathrm{~m}$. If $\mathrm{El}=14,000 \mathrm{kNm}^{2}$ for the beam, determine the slope at A and deflection at point C .

OR

8. a) An I section steel girder with $I_{x x}=2,502 \times 10^{4} \mathrm{~mm}^{4}$ is used as a beam for a span length of 4 m . The beam carries a UDL of $4 \mathrm{kN} / \mathrm{m}$ throughout its length. Determine the maximum deflection in the beam and slope at the end of the beam?
b) Derive the relationship between the bending moment and curvature in deflection of beams?

UNIT-V

9. a) State the scientific reason why cylinders burst along longitudinal direction when they subjected to high pressure?
b) A thin cylindrical shell made of 5 mm thick steel plate is filled with water under pressure of 3 $\mathrm{N} / \mathrm{mm}^{2}$. The internal diameter of the cylinder is 200 mm and its length is 1 m . Determine the additional volume of the water pumped inside the cylinder to develop the required pressure. Take for steel $\mathrm{E}=208 \mathrm{kN} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.3$ and for water $\mathrm{K}=2,200 \mathrm{~N} / \mathrm{mm}^{2}$?

OR
10. a) A compound cylinder is made by shrinking one cylinder over another such that the outer diameter is 200 mm , the inner diameter is 100 mm and the junction diameter is 150 mm . If the junction pressure developed between the two cylinders is $10 \mathrm{~N} / \mathrm{mm}^{2}$ and the internal pressure is $50 \mathrm{~N} / \mathrm{mm}^{2}$, what are the hoop stresses at inner and outer radii of both the cylinders?
b) For what length of a Cl column of 80 mm in diameter, the Euler's theory is applicable, if $\sigma_{\mathrm{c}}=550 \mathrm{~N} / \mathrm{mm}^{2}$ for Cl and $\mathrm{E}=102 \mathrm{kN} / \mathrm{mm}^{2}$, the column is hinged at both the ends?

UNIT-IV

7. a) A blower handles $1 \mathrm{~kg} / \mathrm{sec}$ of air at $20^{\circ} \mathrm{C}$ and consumes a power of 15 kW . The inlet and outlet velocities of air are $100 \mathrm{~m} / \mathrm{s}$ and $150 \mathrm{~m} / \mathrm{s}$ respectively. Find the exit air temperature, assuming adiabatic conditions.
b) Derive Clausius Clapeyron equation and explain its significance.

OR

8. a) Write down the Vander Waal's equation of state. How does it differ from the ideal gas equation of state?

$$
7 \mathrm{M}
$$

b) A mass of 0.25 kg of an ideal gas has a pressure of 300 kPa , a temperature of $80^{\circ} \mathrm{C}$, and a volume of $0.07 \mathrm{~m}^{3}$. The gas undergoes an irreversible adiabatic process to a final pressure of 300 kPa and a final volume of $0.1 \mathrm{~m}^{3}$, during which the work done on the gas is 25 kJ . Evaluate the specific heat at constant pressure and constant volume of the gas and the increase in entropy of the gas.

UNIT-V

9. a) Prove that heat and work are path functions.
b) Determine the power required to run a refrigerator that transfers $2000 \mathrm{KJ} / \mathrm{min}$ of heat from a cooled space at $0^{\circ} \mathrm{C}$ to the surrounding atmosphere at $27^{\circ} \mathrm{C}$. The refrigerator operates on reversed Carnot cycle.

OR
10. a) State the first law of thermodynamics and prove that for non-flow process it leads to $\mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}$.
b) A spherical balloon holds 5 kg of air at 200 kPa and 450 K . If the air pressure inside is always proportional to the square of the balloon diameter, determine the work done when the balloon volume doubles due to heating.

