		Hall Ticket Number :														
		Code: 4G533		<u></u>]		R-14	
		II B.Tech. I Se	eme	ester	Sup	ople	mei	ntar	y Exe	ami	nati	ons	Augi	ust 21	021	
						•			yna				U			
				(Мес	char	nical	Eng	jinee	ering)					
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)															
		Answei any iive iuli qu	esiic	DIIS D	y Chi	JOSII	<u> </u>	1e qu *****	Jeziic		JILE	ach	Unii (5X14	- 70 Mai	KS J
	UNIT–I															
1.	a)	Classify the types of the	rmod	lynan	nic sy	stem	s witl	n the	help o	of sui	table	exar	nple.			7M
	b) Identify the differences between open system and closed system in thermodynamics. 7 OR										7M					
2.	a)	A mass of gas is comp			-		atic p	roces								
		Assuming that pressure														8M
		during the process. Ider	-											•••		
	b)	Differentiate between f examples.	Keve	rsidie	proc	æss	and	irreve	ersidie	e Pro	cess	with	the r	ieip o	or suitable	6M
							UNI	[]]								
3.	a)	Determine the expression	on fo	r the	meas	urem	ent c	of per	forma	ince f	for re	versi	ole hea	at eng	ines, heat	
	L)	pump and refrigerators.														10M 4M
	b)	State Carnot theorem.					OF	2								4171
4.	a)	Derive Maxwell relations	s and	l dedi	uce tv	vo "T	-		ons							10M
	b)	Define the following Ter	ms i)	Avai	labilit	y ii) Ir	reve	rsibilit	ÿ							4M
							UNIT	-111								
5.	a)	Write about the Mollier														7M
												7M				
6.	a)	Draw a neat sketch o	f thre	ottling	ı calo	orime	O ter a		volair	h how	v dry	ness	fractio	on of	steam is	
0.	a)	determined.		-							-					7 IVI
	b)											7M				
	(i) its quality is 80 % (ii) it is dry saturated (iii) Superheated the degree of superheat being 65 °C.															
7.	a)	0.3 m ³ of air at pressu	re 8	bar e	xpano	L			ne fin	al pre	essur	e is '	1.3 bar	r. Ass	uming the	7M
		expansion to be polytro			•					•					-	
	b)	=1.4 Derive the expressions	for h	aat tr	anefa	r and	work	done	a duri	na 2	rovor	cihla	isotha	rmal r	VICCOSS	7M
	D)						O		Juun	ng a		51010	130110	innai p	100033.	7 101
8.	a)	-														
equation b) Perfect gas equation The Vander Waal's constants a = 362850 Nm ⁴ /(kg-mol) ² b=0.0423 m ³ /(kg-mol).								mol) ² and								
	b)	List out the assumptions	s mao	de in	the id	leal g	as eo	quatio	n.							4M
							UNI	- -V								
9.	a)	State Dalton's law of ad		•			-									6M
	b)	Explain Mass fraction .N	/lole f	fractio	on, In	terna			nd sp	pecifi	c hea	t of g	as mix	tures		8M
10.		A gas mixture consists	of 0.4	4ka o	f carł	oon n	O conor		and 1	.1 ka	of ca	arbon	dioxid	le Cal	culate the	
		mass fraction, mole frac		-												14M
							*	**								

η

Hall Ticket Number :											
----------------------	--	--	--	--	--	--	--	--	--	--	--

Code: 4GC31

II B.Tech. I Semester Supplementary Examinations August 2021

Mathematics-II

(Common to CE & ME)

Max. Marks: 70

Time: 3 Hours

R-14

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Find the values of for which the equations

(-1)x+(3+1)y+2z=0; (-1)x+(4-2)y+(+3)z=0; 2x+(3+1)y+3(-1)z=0 are consistent and find the ratios of x:y:z when has the smallest of these values. What happens when has the greatest of these values?

- 2. Find the characteristic of the matrix A= $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and hence find its inverse **UNIT-II**
- 3. a) Find a real root of the equation x³-2x-5=0 by the method of false position correct to three decimal places.
 - b) Find the cubic polynomial which takes the following values:

Х	0	1	2	3					
f(x)	1	2	1	10					
OR									

4. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule.

UNIT-III

5. Employ Taylor's method to obtain approximate value of y at x=0.2 for the differential equation $dy/dx=2y+3e^x$, y(0)=0.Compare the numerical solution obtained with the exact solution.

6. Using Runge-Kutta method of order 4, find y for x=0.1,0.2,0.3 given that $dy/dx=xy+y^2$, y(0)=1.Continue the solution at x=0.4 using Milne's method.

UNIT–IV

OR

7. Obtain the Fourier series for f(x) = x in the interval -f < x < f

OR

8. Find the half range sine and cosine series of f(x) = x in 0 < x < 2

UNIT-V

OR

9. Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\left(\frac{px}{y}\right)$ be an analytic function

function

10. Evaluate $\int_{c} \frac{e^{z}}{(z^{2}+f^{2})^{2}} dz$ where c is |z|=4

		Hall Ticket Number :									
	C	R-14									
	-	II B.Tech. I Semester Supplementary Examinations August 2021									
	Mechanics of Solids										
		(Mechanical Engineering) ۲ime: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks									
		******** UNIT–I	-								
1.	a)	Draw the stress-strain diagram of mild steel specimen subjected to tensile test and explain									
	b)	the salient points. An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN elongates									
		0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm. Calculate the modulus of elasticity and the poisson's ratio of the material.									
2.	a)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses	7M								
	b)	Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.	7M								
3.		A beam ABC 8 m long has the support at the end A and other support at B 6 m from A. It carries a uniformly distributed load of 6 kN/m over the entire length and a point load of 10kN at the end C. Draw the shear force and bending moment diagrams OR									
4.		A simple supported beam of length 8m rests on supports 6m apart, the right hand end is overhanging by 2 m. The beam carries a uniformly distributed load of 1500 N/m over the entire length. Draw the shear force and bending moment diagrams and find the point of contra flexure, if any?									
5.	a)	UNIT–III Prove that for a rectangular section the maximum shear stress is 1.5times the average stress. Sketch the variation of shear stress.									
	b)	 Circular beam of 100mm diameter is subjected to a shear force of 10 KN. Calculate i. Average shear stress. ii. Maximum shear stress. 									
		Also sketch the variation of the shear stress along the depth of the beam. OR									
6.	a)	Derive the section modules for a hollow rectangular section	4M								
	b)	A beam is simply supported and carries a U.D.L of 40kN/m run over the whole span. The section of the beam is rectangular having depth as500mm. If the maximum stress in the material of the beam is $120N/mm^2$ and moment of inertia of the section is $7 \times 10^8 mm^4$, find the span of the beam.	10M								
		UNIT-IV									
7.	a)	Derive the relationship between slope, deflection and radius of Curvature of a simply supported beam.	7M								
	b)	A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the slope at the ends of the beam is not to exceed 1 ^o , find the maximum deflection. OR	7M								
8.		A beam ABC of length 10 m has one support at the left end and the other support at a distance of 6 m from the left end. The beam carries a point load of 1 kN at right end and also carries a UDL of 3 kN/m over a length of 4 m from right end 'C'. Determine the slope and deflection at point 'C'. Take $E= 2 \times 10^5 \text{ N/mm}^2$ and $I = 5 \times 10^8 \text{ mm}^4$.	14M								
9.		UNIT–V State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations. OR	14M								
10.		A compound cylinder is made by shrinking a cylinder of external diameter cylinder of 30 cm and internal diameter25cm over another cylinder of external diameter 25cm and internal diameter20cm. After shrinking the radial pressure at the common junction was 8 N/mm2. Find the final stresses set up across the section when the compound cylinder is subjected to an internal fluid pressure of 84.5 N/mm ² .	14M								
			1-111								