Code: 4G533

II B.Tech. I Semester Supplementary Examinations October 2020 Basic Thermodynamics

(Mechanical Engineering)

Max. Marks: 70

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain Quasi- static process with an example
b) A gas undergoes a reversible non flow process according to the relation $P=(-3 V+15)$ where V is the volume in cubic meter and P is the pressure in bar. Determine the work done where the volume changes from 3 to 6 cubic meters.

OR

2. a) Define Zeroth law of Thermodynamics. Explain how it is basis for the temperature measurement.
b) Define internal energy of a system and show that it is a property of the system.

UNIT-II

3. a) What are the two statements of Second law of Thermodynamics
b) An engine operating on a Carnot cycle works within temperature limits of 600 K and 300 K . If the engine receives 2000 KJ of heat evaluate the work done and thermal efficiency of the engine.

OR

4. a) Explain Available energy ,Availability and Irreversibility
b) Prove Maxwell relations.

UNIT-III

5. a) What is steam quality? Develop relations for specific volume, enthalpy and internal energy for two-phase mixture.
b) A vessel containing 5 kg of steam at 8 bar and $250^{\circ} \mathrm{C}$ is cooled by pouring water over the outer surface, till the inside pressure falls to 5 bar. Calculate
i) the final state of the steam ii) heat loss iii) loss of internal energy.

OR

6. a) Explain about critical point of steam. Why does the fusion line for water have negative slope?
b) 10 kg of water at $45^{\circ} \mathrm{C}$ is heated at a constant pressure of 10 bar until it becomes superheated vapour at $300^{\circ} \mathrm{C}$. Find the change in volume, enthalpy, internal energy and entropy.

UNIT-IV

7. a) Explain Vander wall's equation of state and derive the constants for the equation
b) $0.3 \mathrm{~m}^{3}$ of air at pressure 8 bar expands to $1.5 \mathrm{~m}^{3}$. The final pressure is 1.3 bar. Assuming the expansion to be polytropic. Calculate the heat supplied and change of internal energy. Assume $\gamma=1.4$.

OR

8. a) State Dalton's law of additive pressure
b) A gas mixture consists of $0.4 \mathrm{~kg} \mathrm{CO}, 1.1 \mathrm{~kg}$ of CO_{2} and 1.5 kg of N_{2}. Determine
(i) Mass fraction of each component. (ii) mole fraction of each component. (iii) average molar mass of the mixture .(iv)gas constant of the mixture.

UNIT-V

9. a) Explain the four processes of the Stirling cycle with PV and TS diagrams?
b) A Diesel engine has a compression ratio of 14 and cut-off takes place at 6% of the stroke. Find the air standard efficiency?

OR

10. a) What is an Air standard cycle? What are the assumptions for Air standard cycles?
b) In a constant volume cycle the temperature at the beginning and end of the compression are $43^{\circ} \mathrm{C}$ and $323^{\circ} \mathrm{C}$ respectively. Calculate the i) air standard efficiency and ii) the compression ratio. Assume $\gamma=1.4$ for air.

Hall Ticket Number :

\square
Code: 4G236
II B.Tech. I Semester Supplementary Examinations October 2020
Electrical Engineering and Electronics Engineering
(Common to ME, CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the terms
i) Electric Current ii) Potential Difference iii) Electric Power iv) Energy
b) Three capacitors of $2 \mathrm{mF}, 5 \mathrm{mF}$ and 10 mF are connected in series. Find the equivalent capacitance.

OR

2. a) Define the Ohm's Law and its applications.
b) State and explain Kirchoff's laws using neat diagrams.

UNIT-II

3. a) Explain the operation of principle of DC generator.
b) Derive the expression for Torque in a DC Motor.

OR
4. a) Derive the emf equation of $D C$ generator.
b) A 4-pole, lap wound, DC generator has a useful flux of 0.07 Wb per pole, armature consists of 440 numbers of conductors. Calculate the generated emf when it is rotated at a speed of 900 rpm with the help of prime mover.

UNIT-III

5. a) Explain the principle of operation of single phase Transformer with neat sketch.
b) Explain Torque-Slip Characteristics of a Three phase induction motor.

OR

6. a) Derive the expression for E.M.F equation of a transformer.
b) Explain the principle operation of a three phase induction motor with relevant diagrams

UNIT-IV

7. Explain the operation of Half wave rectifier with relevant diagrams.

OR
8. a) Explain the operation of $\mathrm{P}-\mathrm{N}$ junction diode mentioning its applications.
b) Explain the input and output characteristics of transistor in CE configuration.

UNIT-V

9. Describe how phase and frequency are measured by using Lissajous figures.

OR

10. a) Describe how voltage, current and time period are measured by using CRO.
b) List the applications of CRO.

Code: 4GC31

II B.Tech. I Semester Supplementary Examinations October 2020
Mathematics-II
(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$
b) Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix

OR

2. a) Find the rank of the matrix $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$ by reducing into Echelon form
b) Find the Eigen values and eigenvectors of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$

UNIT-II

3. a) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$
b) Using Newton-Raphson Method, compute $\sqrt{41}$ correct to four decimal places

OR

4. Evaluate $\int_{0}^{6} \frac{1}{1+x} d x$ by using

Trapezoidal rule (ii) Simpson's $1 / 3$ rule (iii) Simpson's $3 / 8$ rule.

UNIT-III

5. Using Euler's Method, find an approximate value of y corresponding to $x=1$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.

OR

6. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$

UNIT-IV

7. Find the half range sine and cosine series of $f(x)=x$ in $0<x<2$

OR
8. a) Find the Fourier series expansion for $f(x)=e^{x}$ in $0<x<2 \pi$
b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=a x+b y+a^{2}+b^{2}$

UNIT-V

9. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic everywhere.
b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with $\mathrm{C}:|z|=2$ using Cauchy's Integral Formula

OR

10. Determine p such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytic function
\square
Hall Ticket Number :

R-14

Code: 4G532

|| B.Tech. I Semester Supplementary Examinations October 2020 Metallurgy and Material Science

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. List the various types of bonds occurring in a crystal. Discuss the metallic bond and its characteristics
2. a) What is the necessity of alloying?
b) Write a note on intermediate phases.

UNIT-II

3. What are peritectic reactions? And explain the equilibrium diagrams with neat sketch. 14 M
4. Explain phase rule, Lever rule and composition rule.

UNIT-III

5. Explain the microstructure, properties and applications of Grey Cast Iron.
OR
6. a) Explain season cracking in brasses and how it can be prevented?
b) What is dezincification? How it may be minimized?

UNIT-IV

7. a) State the objectives of annealing.
b) What is age hardening treatment?
OR
8. Describe the steps in construction of TTT diagram with an example 14M

UNIT-V

9. Define composites and classify them. Explain any two methods of production of composites.
OR
10. Explain Open Hearth process of steel making with neat sketch. List out its advantages and
disadvantages.

Code: 4G531

II B.Tech. I Semester Supplementary Examinations October 2020

Mechanics of Solids

(Mechanical Engineering)

Max. Marks: 70
 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain stress strain diagram for mild steel specimen for tensile test in detail?
b) Find the modulus of elasticity for a rod which tapers uniformly from 30 mm to 15 mm in a length of 350 mm . The rod is subjected to an axial load of 5.5 kN and extension of the rod is 0.025 mm

OR
2. A tensile test was conducted on a mild steel bar .The following data was obtained from the test i) diameter of the steel bar $=3 \mathrm{~cm}$ ii) gauge length of the bar $=20 \mathrm{~cm}$ iii) load at which elastic limit $=250 \mathrm{kN}$ iv) extension at a load of 150 kN is 0.21 mm V) Maximum load=380KN .vi)Total extension $=60 \mathrm{~mm}$. viii) diameter of the rod at the failure $=2.25 \mathrm{~cm}$. Determine the i) young's modulus ii)stress at elastic limit iii) percentage elongation iv)percentage decrease in area.

UNIT-II

3. a) Define shear force, bending moment \& point of contra flexure.
b) Draw shear force diagram and bending moment diagram for a simply supported beam of length 9 m carrying a uniformly distributing load of $10 \mathrm{KN} / \mathrm{m}$ for a distance of 6 m from the left end. Also calculate the maximum bending moment on the section.

OR

4. Draw shear force and bending moment diagram for a simply supported beam of length 9 m and carrying a UDL of $10 \mathrm{KN} / \mathrm{m}$ for a distance of 6 m from the left end .Also calculate maximum bending on the section

UNIT-III

5. a) State the assumptions made in the theory of simple bending and derive the bending equation?
b) A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 KN .determine i) Average shear stress ii) maximum shear stress and iii) shear stress at a distance 25 mm above the netural axis

OR

6. An I section beam $350 \mathrm{~mm} \times 150 \mathrm{~mm}$ has a web thickness of 10 mm and a flange thickness of 20 mm . If the shear force acting on the section is 40 KN , find the maximum shear stress developed in the I section? Sketch the shear stress distribution across the section.

UNIT-IV

7. Derive an expression for max deflections for a simply supported beam subjected to UDL by double integration method.
8. A hollow circular shaft 200 mm external diameter and thickness of metal 25 mm is transmitting power at 200 rpm . The angle of twist over a length of 2 m was found to be 0.5 degrees. Calculate the power transmitted and the maximum shear stress induced in the section. Take modulus of rigidity of material as $84 \mathrm{kN} / \mathrm{mm}^{2}$.
9. A thin cylindrical shell, 2 m long has 200 mm diameter and thickness of metal 10 mm . It is filled completely with fluid at atmospheric pressure. If an additional $25000 \mathrm{~mm}^{3}$ fluid is pumped in, find the pressure developed and hoop stress developed. Find also the changes in diameter and length. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$.

OR
10. A hollow cast from iron whose outside diameter is 200 mm and has a thickness of 20 mm is 4.5 m long and is fixed at both ends. Calculate the safe load by Rankine's formulae using a factor of safety of 2.5.Find the ratio of Euler's to Rankine's loads. Take $\mathrm{E}=1 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Rankines constant $=1 / 1600$ for both ends pinned case and $f_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$.

