II B.Tech. I Semester Supplementary Examinations November 2019

Basic Thermodynamics

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Discuss the macroscopic and microscopic point of view of thermodynamics with examples
b) A non-flow reversible process will occur for which pressure and volume are correlated by $p=v^{2}+(6 / v)$ where p is in bars and v is in m^{3}. What amount of work will be done when the volume changes from $2 \mathrm{~m}^{3}$ to $4 \mathrm{~m}^{3}$.

OR

2. a) Prove that the energy is the property of the system
b) $0.2 \mathrm{~m}^{3}$ of ideal gas at a pressure of 2 Mpa and 600 K are expanded isothermally to 5 times the initial volume. It is then cooled to 300 K at constant volume and then compressed polytropically to its initial state. Determine the net work done and heat transfer during the cycle.

UNIT-II

3. a) State the Kelvin plank and Clausius statements of second law of thermodynamics and prove their equivalence.
b) A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives 8.2 kW work. Calculate the Thermal efficiency and heat rejected.

OR

4. a) Derive the expression for change in entropy in terms of $v-T, p-T$
b) An iron cube at $400^{\circ} \mathrm{C}$ is dropped into an insulated bath having 10 kg water at $25^{\circ} \mathrm{C}$. Final temperature of water is $50^{\circ} \mathrm{C}$. Assume the process as reversible and find the change in entropy of iron and water. Take $\mathrm{C}_{\mathrm{pw}}=4.186 \mathrm{~kJ} / \mathrm{kgK}$.

UNIT-III

5. a) What is superheating. Why superheated steam is recommended in steam power plants
b) Draw the layout of Mollier diagram and explain the important properties on it.
OR
6. a) Explain the working of throttling calorimeter with neat sketch.
b) Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and adiabatically in a steam turbine to $40^{\circ} \mathrm{C}$. Evaluate the ideal work output of the turbine per kg of steam.

UNIT-IV

7. a) Show that for an ideal gas $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$ 7M
b) With help of suitable example explain the differences between heat transfer and work transfer 7M
OR
8. a) Explain free expansion process with suitable sketch 7M
b) Air at $250^{\circ} \mathrm{C}$ and 300 kPa is compressed reversibly and isothermally to $1 / 16 \mathrm{th}$ of its original volume. Find the final pressure, the work done and change in internal energy per kg of air 7M
UNIT-V
9. a) With the help of P-V and T-S diagrams explain OTTO cycle and derive an expression for air standard efficiency.7M
b) What is an Air standard cycle? What are the assumptions for Air standard cycles? 7M
OR
10. In an Diesel cycle the compression ratio is 15. Compression begins at 0.1 MPa $40^{\circ} \mathrm{C}$. The heat added is $1.675 \mathrm{MJ} / \mathrm{Kg}$. Find i) Maximum temperature of the cycle ii) Temperature at the end of expansion iii) Work done $/ \mathrm{kg}$ of air iv) Cycle efficiency
Hall Ticket Number :

\square
Code: 4G236
R-14
II B.Tech. I Semester Supplementary Examinations November 2019
Electrical Engineering and Electronics Engineering
(Common to ME, CSE \& IT)
Max. Marks: 70Time: 3 HoursAnswer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I1. a) Define the Ohm's Law and its applications.7M
b) State and explain Kirchoff's laws using neat diagrams. 7M
OR2. a) Derive the expression for delta to star transformation.7M
b) Two resistances of 1.5 and 3.5 are connected in parallel and their combination is connected is series with a resistance of 1.95 . Find the equivalent resistance of the circuit. What current will it draw if connected to a 30V supply?

UNIT-II

3. a) A 6 pole, lap wound armature has 840 conductors and flux per pole of 0.018 wb . Calculate the emf generated when the machine is running at 600rpm.
b) Explain the operation \& principle of dc motors and explains the significance of back emf in dc motors. 7M
OR4. Explain classification of a DC generator along with suitable diagrams and voltageand current relationship.
UNIT-III5. a) Derive the expression for E.M.F equation of a transformer.7M
b) Explain the principle operation of a three phase induction motor with relevant diagrams 7M
OR
4. a) Describe the tests that can be performed on a single phase transformer in detail. 7M
b) A 3-Ф induction motor runs at 1200 rpm at no load and 1140 rpm at full load when supplied with power from a 60 Hz , 3 phase line. Calculate number of poles and slip at full load. 7M
UNIT-IV
5. Explain the operation of Half wave rectifier with relevant diagrams.14M
OR
6. a) Construct the practical circuit of a transistor and elaborate it. 7M
b) Explain the operation of transistor as an amplifier. 7M
UNIT-V9. Describe how phase and frequency are measured by using Lissajous figures.14M
OR
7. Explain the Block diagram of CRO with a neat sketch. 14M

Code: 4GC31

II B.Tech. I Semester Supplementary Examinations November 2019

Mathematics-II

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
b) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]$ and hence find A^{4}.

OR

2. a) Solve the equation $x+2 y+3 z=0 ; 3 x+4 y+4 z=0 ; 7 x+10 y+12 z=0$
b) Find the Eigen values and Eigen vectors $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$

UNIT-II

3. From the following table of values of ' x ' and ' y ', obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.5$

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0
OR						

4. From the following table, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation formula

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31
UNIT-III					

5. Using Euler's Method, find an approximate value of y corresponding to $x=1$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $\mathrm{x}=0$.

OR
6. Using Picard's process of successive approximation, obtain a solution up to fifth approximation of the equation $\frac{d y}{d x}=x+y$ such that $y=1$ when $\mathrm{x}=0$. Check your answer by finding the exact solution.

UNIT-IV

7. a) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
b) Form a partial differential equation by eliminating the arbitrary function f from $z=f\left(x^{2}+y^{2}\right)$.

OR

8. Form the partial differential equation by eliminating arbitrary function from $F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$

UNIT-V

9. a) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$
b) Evaluate $\int_{c} \frac{e^{z}}{(z-1)^{3}} d z$ with $\mathrm{C}:|z-1|=\frac{1}{2}$ using Cauchy's Integral Formula

OR

10. If $f(z)$ regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
\square

II B.Tech. I Semester Supplementary Examinations November 2019

Metallurgy and Material Science

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Relate the phenomena of plastic deformation with crystal imperfections

7M
b) Explain planimetric method of determination of grain size and relate mechanical properties with grain size

OR

2. a) Summarize Hume-Rothery rules with examples
b) Explain various types of intermediate alloy phases with examples

7M

UNIT-II

3. a) Describe the construction of isomorphous alloy system and equilibrium cooling of a typical alloy in this system
b) Lead and tin form a eutectic at $183^{\circ} \mathrm{C}$ with composition (38.1Pb-61.9Sn). The melting temperatures of lead and tin are $328^{\circ} \mathrm{C}$ and $232^{\circ} \mathrm{C}$ respectively. The maximum solubility of tin in lead is 19% and that of lead in tin is 2.5% both occurring at eutectic temperature. The room temperature solubility of tin in lead is 2% and that of lead in tin is 0%. Construct the lead and tin phase diagram on a graph sheet labeling lines and areas. Calculate the composition and relative amounts of eutectic and proeutectic constituents of an alloy containing 30% tin after eutectic temperature

OR
4. a) Describe eutectic, peritectic, eutectoid and peritectoid reactions
b) Construct $\mathrm{Fe}-\mathrm{Fe}_{3} \mathrm{C}$ equilibrium diagram, mark compositions and temperatures, label areas and indicate important reactions occurring on it 7M

UNIT-III

5. a) Describe the composition, structure, properties and applications of malleable cast iron and grey cast iron

7M
b) Explain the composition, microstructure, properties and applications of Hadfield manganese steel and duralumin 7M

OR

6. a) Classify brasses and explain the stress corrosion cracking and dezincification of brasses
b) What are the allotropic forms of titanium and describe the effect of alloying elements on these allotropic forms 7M

UNIT-IV

7. a) Discuss the details of full annealing and spherodizing of carbon steels7M
b) Explain age hardening process with an example 7M

OR
8. a) Describe the details of flame hardening and induction hardening 7M
b) Distinguish between mechanical and diffusion coatings 7M

UNIT-V
9. a) Describe the types, properties and applications of glasses 7M
b) Discuss various reinforcements used in composite materials 7M

OR
10. a) Elaborate steel making using Bessemer converter 7M
b) Explain the steps involved in powder metallurgy
|| B.Tech. I Semester Supplementary Examinations November 2019

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A brass bar having cross sectional area of $1200 \mathrm{~mm}^{2}$ is subjected to axial force as shown in figure. Find the total elongation of the bar. The modulus elasticity of brass is $110 \mathrm{GN} / \mathrm{m}^{2}$

b) A bar of 20 mm diameter is tested in tension. It is observed that when a load of 37.7 kN is applied, the extension measured over gauge length of 200 mm is 0.12 mm and contraction in diameter is 0.0036 mm . Find the four elastic constants.

OR

2. a) A bar of 30 mm diameter is subjected to a pull of 60 kN . The measured extension on gauge length of 200 mm is 0.1 mm and in diameter is 0.004 mm . Calculate
i) Young's Modulus
ii) Poison's Ratio
iii) Bulk Modulus
b) Explain the stress-strain diagram for ductile and brittle materials with help of legible sketches?

UNIT-II

3. A Cantilever beam of length 4 m carries a gradually varying load of zero at free end and $2 \mathrm{kN} / \mathrm{m}$ at a distance of 2 m from the free end and a point load of 80 kN at a distance of 3 m from free end. Draw the shear force and Bending Moment diagram for the beam.

OR
4. A simply supported beam $A B$ of 6 m span is carrying a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from left end and a point load of 75 kN at a distance of 1.5 m from right end. Draw the shear force and Bending Moment diagram for the beam and also calculate maximum bending moment.

UNIT-III

5. a) The cross section of a T-beam is as follows: Flange thickness=10mm; width of the flange $=100 \mathrm{~mm}$; thickness of web=10mm; depth of the web=120mm. if a shear force of 2 kN is acting a particular section of the beam. Evaluate and draw the shear stress distribution across the cross-section.
b) A simply supported beam carries a concentrated load at the centre of the span. If the maximum stress due to bending is 150 Mpa , Find the ratio of the depth of beam section to span in order that the central deflection may not exceed 1/500 of the span.
6. a) A channel section made with 120 mmx 10 mm horizontal flange and $16 \mathrm{~mm} \times 10 \mathrm{~mm}$ vertical web is subjected to a vertical shearing force of 120 kN . Draw the shear stress distribution diagram across the section.
b) Show from the first principles that is a beam of rectangular section is subjected to a transverse shearing force, the maximum shear stress at a cross-section is 1.5 times the mean shear stress.

UNIT-IV

7. A steel girder of uniform cross-section section, 14 m long is simply supported at the ends. It carries concentrated loads 90 kN and 60 kN at two points 3 m and 4.5 m from two ends respectively. Calculate: the deflection of the girder at the points under the two loads and the maximum deflection. Take: $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=64 \times 10^{-4} \mathrm{~m}^{4}$.

OR

8. Determine the slope at the supports and maximum deflection for the beam given in the figure below using Macaulay's method. Take: $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=80 \times 10^{-4} \mathrm{~m}^{4}$

9. a) Derive the equations for the circumferential and longitudinal stresses induced in the thin spherical shells.
b) A shell 3.25 m long and 1 m diameter is subjected to an internal pressure of $1.2 \mathrm{n} / \mathrm{mm}^{2}$. If the thickness of the shell is 10 mm , find the circumferential and longitudinal stresses. Find also the maximum shear stress and changes in the dimensions of the shell. Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and the poison's ratio is 0.3 .

OR

10. a) A cylindrical vessel is 1.5 m diameter and 4 m long is closed at ends by rigid plates. It is subjected to an internal pressure of 3 Mpa . If the maximum principal stress is not to exceed 150 Mpa , find the thickness of the shell. Also find the changes in the diameter, length and volume of the shell. Take: E=200Gpa and the poison's ratio is 0.25 .
b) A shell of 4 m long 1 m in diameter is subjected to an internal pressure of $1 \mathrm{~N} / \mathrm{mm}^{2}$. If the thickness of the shell is 10 mm ; find the circumferential and longitudinal stresses. Find also the changes in the dimensions of the shell. Take: $\mathrm{E}=200 \mathrm{Gpa}$ and the poison's ratio is 0.3 .
\qquad
