Hall 7	Ficke	et Number :												Г]
Code	: 4 G	331	1	1	1	1	1	1	1	1	1	1		R-14	
II B.Tech. I Semester Supplementary Examinations May 2017															
			otro	nion	-	-		-	rcui	-	aina	orin	~)		
Max.	Ма	rks: 70	ecirc	nics	anc		011111	UNIC	atio		gine	enn	g)	Time: 3 Ho	ours
А	nsw	er all five unit	s by	cho	osing		e que ****		n fror	n ea	chu	nit (5 x 1	4 = 70Marks)	
								UNI	Г—І						
1.	a)	Consider a	-		-										
		R _c =2K , n _{fe} A _i =I _L /I _S ,A _{VS} =			.1K	,n _{oe} =	=25µ	A/V	and	n _{re} =	2.5X	10-14	.Finc	$I A_i^!, R_i^!, A_{\vee}^!,$	8M
	b)	State millers	•	-	Exp	lain i	its sid	anific	ance	in tr	ansis	stor c	ircui	analysis	6M
	- /				ľ			OR						, , , , , , , , , , , , , , , , , , , ,	
2.	a)	Using the h- impedance(2	•						•				•	ain(A _I), Input	8M
	b)		nce R I ho	L=10 e=2	∩. 00 5μΑ/	Γhe(V.	CE h Com	-para pute	amete the	ers a e C	re h _{ie} urrer	,=1.2 nt g	K, jain	h _{re} =2.5X10 ⁻⁴ , (A _I), Input	
		approximate			•	gui	. ,	UNIT]					6M
3.	a)	Draw the Hy significance									CE	Conf	igura	tion and the	7M
	b)	Explain the frequencies	free	quen	cy r	espo	onse	of	amp	ifier	at	Low,	Mie	d and High	7M
								OR							
4.	a)	Derive the E and feedbac terms of its l	ck co	nduo	ctanc	e (g	^{b'} c) C	fa						uctance (g _m) equencies in	8M
	b)	A BJT has th FT=4MH _z , C			• •									K , h _{fe} =500,	6M
								UNIT	-111]					
5.	a)	Explain the o	conce	ept o	f feed	dbac	k witl	h blo	ck di	agra	m				7M
	b)	Briefly discu	ss ab	out f	he e	ffect	of fe	edba	ack o	n am	plifie	r bar	ndwic	lth	7M
								OR							
6.	a)	Draw the ci expressions		•									•	r and derive tage gain	10M
	b)	An amplifier feedback ch the open loo	ange	s by	20%	anc	the	gain	with					gain without 6. Determine	4M

UNIT–IV

7.	a)	Explain the Working of transistorized wein-bridge oscillator with neat diagram	10M
	b)	A wein bridge oscillator has a frequency of 400Hz, if the value of C is 100pF then determine the value of R.	4M
		OR	
8.	a)	What is Piezo electric effect? Draw ac equivalent circuit of a crystal and explain its working	10M
	b)	What are the features and advantages of crystal oscillator?	4M
		UNIT–V	
9.	a)	A Class B Push-Pull amplifier supplies power to a loud speaker of 10 .The transformer has a turns ratio of N1:N2 of 4:1 and efficiency is 95%.calculate the following.	
		(i) Max power output	
		(ii) Max power dissipation in each transistor	8M
	b)	Derive the expression for efficiency of series fed Class A power amplifier	6M
		OR	
10.	a)	Draw and explain the circuit diagram of a single tuned capacitive coupled amplifier. Also explain its operation	8M
	b)	Explain Advantages, disadvantages and applications of tuned amplifiers ***	6M

Hall 1	Ficke	et Number :
code	: 4G	C32 R-14
	II I	B.Tech. I Semester Supplementary Examinations May 2017
		Engineering Mathematics
Max.	Mar	(Common to EEE & ECE) ks: 70 Time: 3 Hour
nswe	r all	five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)
1.	a)	Prove that if A and B are equivalent matrices, there exist non-singular matrices
	г)	P and Q such that B=PAQ.
	b)	Find the values of $\}$ and \sim for which the system of equations $3x + 2y + z = 6$; $3x + 4y + 3z = 14$; $6x + 10y + \}z = \sim$ has (i) unique solution, (ii) no solution and
		(iii) infinite number of solutions.
		OR
		$\begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$
2.	a)	Define Rank of a Matrix. Reduce the matrix $\begin{vmatrix} 3 & 2 & -1 \\ 4 & 2 & 6 \\ 7 & 4 & 5 \end{vmatrix}$ to the normal form
	г.)	and hence find its rank.
	b)	Prove that the characteristic roots of a Hermitian matrix are real.
3.	a)	Find the order of convergence of Newton-Raphson method.
	b)	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition $y = 1$ at $x = 0$. Find y for $x = 0.1$ by
		Euler's method. OR
4.	a)	Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2$, $y(0) = 1$. Find the initial
		values $y(-0.1)$, $y(0.1)$, $y(0.2)$ from the Taylor's series method.
	b)	
	5)	Find a real root of the equation $x \log_{10} x = 1.2$ by Regula-Falsi method correct to four decimal places.
5.	a)	Find the missing term in the table
		x 2 3 4 5 6
	L)	y4549.254.167.4Value it y it y it y
	b)	Velocity V of a particle at distances from a point on its linear path is given by the following table. Estimate the time taken by the particle to traverse the
		distance of 20 meters.
		S(m) 0 2.5 5.0 7.5 10.0 12.5 15 17.5 20
		V(m/sec) 16 19 21 22 20 17 3 11 9 OR
6.	a)	From the following table, find $e^{1.02}$, using Newton's forward formula
-	,	x 1.00 1.05 1.10 1.15 1.20 1.25 1.30
		<i>e^x</i> 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693
	b)	Find $f'(7.5)$ from the following table:
		x 7.47 7.48 7.49 7.50 7.51 7.52 7.53

X	7.47	7.48	7.49	7.50	7.51	7.52	7.53	
f(x)	0.193	0.195	0.198	0.201	0.203	0.206	0.208	

Page **1** of **2**

7M

UNIT–IV

7. a) Fit a second degree parabola to the following data

x	1989	1990	1991	1992	1993	1994	1995	1996	1997	
у	352	356	357	358	360	361	361	360	359	7M
					•	•				

b) Solve the partial differential equations $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given $u = 3e^{-y} - e^{-5y}$

when x = 0.

OR

- 8. a) Solve by Charpit's method $z = p^2 x + q^2 y$.
 - b) An experiment data of the relation $V = at^b$ is given by

V (ft/min)	350	400	500	600					
<i>t</i> (min)	61	26	7	2.7					

Find the best possible values of *a* and *b*.

UNIT–V

- 9. a) Expand $f(x) = \sqrt{1 \cos x}$, 0 < x < 2f in a Fourier series. Hence evaluate $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \cdots$
 - b) If $f, tf, t^2 f, \dots t^n f$ are absolutely integrable and $F(\cdot)$ is Fourier transform of f, then prove that $\frac{d^n}{d\check{S}^n} (F(\check{S})) = (-i)^n F\{t^n f(t)\}, n = 1, 2, \dots$ 7M

OR
10. a) Find the Fourier series expansion of
$$f(x) = 2x - x^2$$
 in $(0, 3)$ and hence

deduce that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots \infty = \frac{f}{12}$$
 7M

b) Show that the inverse finite Fourier sine transform of

$$F_{s}(x) = \frac{1}{f} \left\{ 1 + \cos nf - 2\cos \frac{nf}{2} \right\} \text{ is } f(x) = \begin{cases} 1, & 0 < x < f / 2 \\ -1, & f / 2 < x < f \end{cases}$$

7M

7M

7M

7M

Hall 7	Ficke	et Number :	_
Code:	4G	C34 R-14	
		B.Tech. I Semester Supplementary Examinations May 2017	
		Environmental Science	
Max.	Mar	ks: 70 (Common to ECE & IT) Time: 3 Hou	rc
		five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	-
	-	******	
		UNIT–I	
1.	a)	Mention few institutions involved and role played by them in protecting the	
	F)	environment.	7M
	b)	What are the reasons for the decline of ecosystem globally? OR	7M
2		-	714
2.	a) b)	Outline the role of an individual in the prevention of pollution	7M 7M
	b)	Write on the need for public awareness of environment and its importance.	7M
2			714
3.	a) b)	What is over grazing? Write a note on the impact of over grazing.	7M 7M
	b)	How soil erosion occurs. Mention few remedial measures to prevent soil erosion. OR	7M
Λ			7M
4.	a) b)	Enumerate few conflicts over water that you have known. Write a note on alternate energy resources and their usage.	7M
	0)		7 101
_		UNIT-III	
5.	a)	What are the characteristic features of aquatic ecosystem?	7M
	b)	Summarize the threats to biodiversity.	7M
0	-)	OR	
6.	a)	Write on cycling of nutrients and energy in Nitrogen system.	7M
	b)	Describe the values of biodiversity.	7M
		UNIT–IV	
7.	a)	Explain the effects caused by water pollution and how it will be controlled.	7M
	b)	Write short notes on (i) Thermal pollution and (ii) Marine pollution	7M
		OR	
8.	a)	What are nuclear hazards? Mention few nuclear hazards occurred in recent years.	7M
	b)	Describe the best practices of solid waste management.	7M
		UNIT–V	
9.	a)	How acid rains occurs. Explain.	7M
	b)	Enumerate the human rights with respect to environment protection.	7M
		OR	
10.	a)	What is Air pollution Act? Mention the postulates of Air pollution Act?	7M
	b)	Write notes on the impact of environment on human health.	7M
		*** Dago 1 d	of 1
		Page 1 c	лт

Cade		R-14	
Code		1 332	
	II	B.Tech. I Semester Supplementary Examinations May 2017	
		Pulse and Digital Circuits (Electronics & Communication Engineering)	
Мах	. Mc	arks: 70 Time: 3 Hou	Jrs
-		Il five units by choosing one question from each unit (5 x 14 = 70 Marks	
		UNIT–I	
1.	a)	Obtain the response of high pass RC circuit for a ramp input wave form.	7M
	b)	A pulse of amplitude 5 V and duration 20 μ sec is applied to High pass RC circuit having R= 10 k and C = 1000 pf. Calculate the output V ₀ (t) Sketch the output waveform. Calculate the tilt and undershoot.	7M
		OR	
2.	a)	Derive the expression for rise time of integrating circuit and prove that it is proportional to time constant and inversely proportional to upper 3 dB frequency.	7M
	b)	 An ideal 1 μ -Sec pulse is fed to a low pass circuit. Calculate and plot the output waveform under the following conditions: The upper 3-dB frequency is i. 10 MHz ii. 1 MHz 	
		iii. 0.1 MHz.	7M
		UNIT–II	
3.	a)	For the clipper circuit shown below, the input is 50sinwt. Draw the transfer characteristics and input – output waveforms, assuming ideal diode.	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		· · · · · · · · · · · · · · · · · · ·	7M
	b)	Explain the operation of two level slicer.	7M
1	2)	OR State and prove elemning sirewit Theorem	714
4.	a) b)	State and prove clamping circuit Theorem.	7M
	b)	What is meant by comparator and explain diode differentiator comparator operation with the help of ramp input signal is applied.	7M
		UNIT-III	
5.	a)	Explain the linearity connection in current sweep circuit	7M
	b)	With the help of a circuit diagram and waveforms explain frequency division	
	- /	of an astable multivibrator with pulse signals.	7M
		OR	
6.	a)	Explain about frequency division in the sweep circuit.	7M
	L-)	With a the median of the second second second second the median second	

Hall Ticket Number :

Page 2 of 2

Code: 4G332

7M

7M

7M

UNIT–IV

- 7. a) Derive an expression for the o/p gate width of a transistor monostable multivibrator. 7M
 - b) Consider an astable multi using NPN transistor. The circuit and device parameters are V_{cc} , Rc = 560, R = 5.6k, C = 50pF, $h_{FE} = 40$ and $r_{bb} = 200$. Calculate and plot to scale the o/p waveforms at the base and collector of any one transistor.

OR

- 8. a) Explain the working of a Bistable multivibrator circuit with the help of neat waveforms. What are its applications?
 - b) Design a collector coupled one-shot multivibrator circuit using n-p-n transistors. Neglect ICBO. Assume VCE(sat) to be 0v., hFE(min) = 20. In the stable state, the OFF transistor has VBE = -1v. The on transistor has base current I_B which is 50% in area of the IB(min) value. Vcc = 6v, IC(sat) = 2 mA. Delay time is 3000 µsec. Choose R1 = R2.

UNIT-V

9.	a)	What is pedestal? How it effects the output of a sampling gates?	7M
	b)	Explain about DTL NOR gate.	7M
		OR	
10.	a)	Draw and explain a sampling diode whose response is not sensitive to the	

upper level of the control voltage.b) Draw and explain a unidirectional gate which delivers an output only at a coincidence of a number of control voltages.7M

Hall Tick	et Number :
Code: 4G	333 R-14
	B.Tech. I Semester Supplementary Examinations May 2017
	Signals and systems
	(Electronics and Communication Engineering)
Max. Ma Answ	rks: 70 er all five units by choosing one question from each unit (5 x 14 = 70 Marks)
7 (115) (**************************************
	UNIT–I
1. a)	Obtain the trigonometric Fourier series for the half wave rectified sine wave shown in figure below.
	f(t)
	0 T/2 T 3T/2 10M
b)	Derive equations to find even and odd parts of a given function f(t). 4M
	OR
2. a)	Draw a signal $f(t) = 1$ for 0 <t<1< td=""></t<1<>
	2 for 1 <t<2. determine<="" td=""></t<2.>
	i) f(2t) ii) f(t-1) and iii) f(2t+1) 8M
b)	ii) f(t-1) and iii) f(2t+1)8MCompare Fourier series and Fourier Transform.6M
5)	·
3. a)	Find the inverse Fourier Transform of the following signals
	i) $2\pi\delta(\omega)$
	ii) $\frac{j\omega+12}{(j\omega)^2+5j\omega+6}$ 8M
b)	
b)	Determine the Fourier Transform of $f(t) = u(t+0.5) - u(t-0.5)$ 6M OR
4. a)	Find the Fourier Transform of double sided real function $e^{-a t }$. Also draw the
,	magnitude and phase response. 8M
b)	State any three properties of Fourier Transform 6M
,	UNIT-III
5. a)	Consider an LTI system with input $x(t) = e^{-t}u(t)$ and impulse response
0. dj	$h(t) = e^{-2t}u(t)$. Find the output response $y(t)$. 7M
b)	Explain about system properties causality and time invariance. 7M
	OR
6. a)	Obtain the relationship between bandwidth and rise time. 7M
b)	Show that the autocorrelation function and power spectral density are Fourier
	Transform pair 7M
	Page 1 of 2

		UNIT–IV	
7.	a)	Evaluate the following integral using Parseval's theorem	
		$\int_{-\infty}^{\infty} e^{-2t} u(t) dt$	9M
	b)	What is meant by aliasing? How to overcome it?	5M
		OR	
8.	a)	Compare different types of sampling techniques	8M
	b)	Consider the signal $x(t) = 10\cos(2000 \ t) + 20\sin(1000 \ t) + 8\cos(5000 \ t)$	
		i) Determine the Nyquist rate of the signal	
		ii) What is the discrete time signal after sampling if the signal is sampled at	
		5000 samples per second?	6M
		UNIT–V	
9.	a)	State and verify initial value theorem and final value theorem of Laplace Transforms	10M
	b)	Find the system function of the following linear time invariant discrete system.	
		y(n) - 2y(n-1) = x(n-1) + 2x(n-2).	4M
		OR	
10.	a)	Find the inverse Laplace transform of $X(s) = \frac{2s^2 + 9s - 47}{(s+1)(s^2 + 6s + 25)}$.	8M

Г

b) Define ROC for Z Transforms. Draw the ROC for left side and right side sequences. 6M
