Hall	Ticke	et Number :											
Code	e: 4G	R-14											
		II B.Tech. I Semester Supplementary Examinations May 2019											
		Electronic Circuits											
Mc	N Yr	(Electronics and Communication Engineering) Narks: 70 Time: 3 H	ours										
1410		wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks											

1.	a)	UNIT–I Draw the small signal hybrid equivalent model of a transistor. Derive the											
	u)	expressions for A_i , Z_i , Av and Y_o .											
	b)	A CE amplifier is drawn by a voltage source of internal resistance $R_s = 800$											
		and the load impedance is a resistance $R_L = 1000$. The h-parameters are											
	$h_{fe} = 50$, $h_{ie} = 1 \text{ k}$, $h_{oe} = 25 \ \mu\text{A/V}$ and $hre = 2 \ x \ 10^{-4}$. Calculate A_i , A_v , Z_i and Z_o using exact analysis.	6M											
		OR											
2.		Draw the circuit diagram of two stage RC coupled transistors amplifiers.											
		Explain the operation and calculate the mid frequency range and low	14M										
		frequency range.											
3.		UNIT-II Determine high frequency peremeters of Hybrid model in terms of low											
5.		Determine high frequency parameters of Hybrid – model in terms of low frequency parameters.	14M										
		OR											
4.	a)	Define Gain Bandwidth product and derive the relation between f_{T} and f .	7M										
	b)	Derive the expression for CE Short circuit current gain with the help of											
		necessary circuit diagrams and approximations.	7M										
_	,												
5.	a)	Derive the expression for feedback gain, input resistance and output resistance for voltage series feedback amplifier.	8M										
	b)	A voltage series negative feedback amplifier has a voltage gain without											
		feedback of A=50, input resistance R_i = 2K , output resistance R_o = 15K and feedback ratio of 0.01. Calculate the voltage gain, input resistance and output											
		resistance of the amplifier with feedback?	6M										
		OR											
6.	a)	Prove that negative feedback increases the bandwidth and decreases the distortion.											
	b)	An amplifier has a gain of 400, $f_1\!=\!50Hz, f_2\!=\!200KHz$ and a distortion of 10%											
		without feedback. Determine the amplifier voltage gain f_{1f} , f_{2f} and D_f when a	714										
		negative feedback is applied with feedback ratio of 0.01.	7M										
7.	a)	UNIT-IV With a neat circuit diagram, explain the generalized analysis of LC oscillator.	8M										
7.	b)	Colpitt's oscillator is designed with $C_2=100$ pF, $C_1=7500$ pF and a variable	0101										
	5)	inductance. Determine the range of inductance values, if the frequency of											
		oscillation is varied between 950 KHz and 2050 KHz.	6M										
_		OR											
8.	a)	Classify various types of oscillators. Explain in brief.	6M										
	b)	Show that the gain of Wein-bridge oscillator using BJT amplifier is at least 3 for oscillations to occur.											
		UNIT-V	8M										
9.	a)	Show the conversion efficiency of transformer coupled class A amplifier is 50%.	8M										
	b)	Explain the operation of Class B push pull amplifier.	6M										
	,	OR											
10.		Describe the operation of a single tuned capacitive coupled amplifier and											
		derive the expression for bandwidth.	14M										

Code: 4G235

R-14

II B.Tech. I Semester Supplementary Examinations May 2019 Electrical Circuit Theory

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

1. Determine the current through 3 ohms resistor using node voltage analysis

OR

2. Explain about Star &Delta transformations with equations.

- 3. a) Explain the advantages of AC supply
 - b) A series circuit consisting of a resistor of 10 ohms and an inductance of 100mH is connected across a 200V, 50Hz, single phase ac supply. Determine the current drawn, real power and reactive power

OR

- 4. a) Define Cycle, Time Period, Frequency, Peak to Peak value & Amplitude with wave forms.
 - b) A voltage wave is represented by v=200sin314t. Find i)Maximum value ii)RMS value iii) Average Value iv) Frequency v) Time period vi)instantaneous value after 0.05 sec.

UNIT–III

5. A steel ring of 180cm mean diameter has a cross-sectional area of 250mm². Flux developed in the ring is 250µWb when a 4000 turns coil carries certain current. Calculate i) MMF required ii) Reluctance iii) current in the coil. Assume relative permeability of steel is 1100.

OR

- 6. a) Derive the expression for resonant frequency of a parallel resonant circuit.
 - b) A series RLC circuit has R=1000 , L=100mH and C=10µF. If a voltage of 100V is applied across the series combination. Calculate i) Resonant frequency ii) Q-factor and iii) Half power frequencies.

UNIT–IV

7. Obtain the relationship between line and phase voltages and currents in Delta connection with phasor diagram.

8. A three phase balanced system supplies 100V, 50Hz to star connected load whose phase impedances are (6+j8)ohm. Determine the line currents and voltages and also draw the phasor diagram.

- 9. a) State and explain Superposition theorem with an example
 - b) State and explain Millman's theorem.

OR

10. Find the load impedance Z_{L} across ab for maximum power transfer to the load. Also find the max. power delivered to the load impedance for the network shown below

Hall Ticket Number :														[1
Cod	Code: 4G333														
II B.Tech. I Semester Supplementary Examinations May 2019															
Signal and Systems (Electronics and Communication Engineering)															
Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)															
UNIT–I															
1.	a)	Obtain the condition under which two signals $f_1(t)$ and $f_2(t)$ are said to be orthogonal to each other. Hence prove that Sin nw ₀ t and Cos mw ₀ t are orthogonal to each other for												7M	
	b)	Derive the ne Fourier Series		ary e	expre	ssior	n to i	repre	sent	the f	uncti	on f(t) using	g Trigonometric	7M
								0	R						
2.	2. a) Compute the Fourier Transform of i) $f(t) = (1/2) - n u(-n-1) ii) f(t) = sin (n /2)+cos (n /2) + cos ($											/2)+cos (n)	8M		
	b)	State and prove sampling theorem for band limited signals using graphical approach. And What is aliasing? Explain its effect on sampling.												6M	
3.	a)	UNIT-II Find the Fourier transform of a gate pulse of unit height, unit width and centered at t=0.										and centered at	7M		
	b)	Determine the by y (t) = $e^{-2 t }$						de an	d pha		•		whose	function is given	7M
Λ	c)	Find the Fouri	or Tr	onof	orm o	sf (i) '	Trion	0		o wit		ind T	00/	a and amplitude	
4.	a)	A = 10V. (ii) O				• • •		igulai	puis	e wit	n per	100 1	= 036	ec and amplitude	8M
	b) What is aliasing? Explain its effect on sampling.											6M			
5.	a)	What are the requirements of a system to allow the distortion less transmission of a signal?										ransmission of a	7M		
	b)	What is the ir convolution In	•		•			s?	-	ems	conn	ecteo	d in pa	arallel? State the	7M
	OR														
 6. a) A stable LTI system is characterized by the differential equation d²y(t)/d y(t)=2 x(t) Find the frequency response & Impulse response using Fou What is the response of this system if x(t) = t e^{-2t} u(t) 										8M					
 b) Find the impulse response of series RL circuit. What is an LTI system? Exproperties 										tem? Explain its	6M				
	UNIT–IV														
7.	a)	Find the conv and h(t) = u(t -		on of	the	follov	wing	signa	als us	sing (graph	nical	analys	is: $x(t) = e^{-2t} u(t)$	7M
	b)	Show that the function.	e aut	0-CO	rrelat	ion f	uncti	on a	t the	origi	n is	equa	al to th	e energy of the	7M

Code: 4G333

7M

7M

7M

OR

- 8. a) Show that the cross correlation of f(t) with (t t₀) is equal to f(t t₀). Where (t-t₀) is delayed unit impulse function.
 7M
 Prove that auto correlation function and energy/power spectral density function forms
 - b) Fourier Transform pair.
- UNIT–V
- 9. a) Find the Inverse Z transform of

$$X(z) = \frac{z+2}{4z^2 - 2z + 3} |Z| < \sqrt{3/4}$$

b) Find inverse Z-transform of $X(Z) = (1 - 1/3z^{-1})(1 - 1/6z^{-1})ROC: |Z| > 1/3$

OR

- 10 a) Determine the inverse Laplace of the following functions *i*) 1/s(s+1)(s+3) *ii*) $3s^2 + 8s + 6/(s+8)(s^2+6s+1)$ 8M
 - b) Find out the Laplace transform of the signal shown in below figure.

