Electronic Circuits
(Electronics and Communication Engineering)
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Explain the four h-parameters of a transistor. How these parameters are found from the characteristics of the transistor amplifier?

Show that the voltage gain of CE amplifier with an emitter resistor R_{E} is

$$
\frac{-h_{f e} R_{L}}{R_{S}+h_{i e}+h_{f e} R_{L}} \text { by assuming hfe } \gg 1 \text {. Neglect } \mathrm{h}_{\mathrm{re}} \text { and } \mathrm{h}_{\mathrm{oe}} \text {. }
$$

OR

2. Draw the equivalent circuit of a CE amplifier using Millers theorem. What is the upper $3-\mathrm{dB}$ frequency of such circuit?

UNIT-II

3. Given $\beta=120,1 /$ hoe $=40 \mathrm{~K}$. Obtain the cutoff frequencies associated with Cs, Cc, and C_{E}.

OR

4. Consider a single stage CE transistor amplifier with the load resistor "RL". Find out an approximation expression for the gain factor of this amplifier.

UNIT-III

5. Derive the input impedance (Zi) and output impedance (ZO) of a voltage series -ve feedback amplifier in terms of its open loop parameters.

OR

6. What are the advantages of providing negative feedback to an amplifier? A series shunt feedback amplifier represented by figure using a basic voltage amplifier operates with $\mathrm{V}_{\mathrm{s}}=100 \mathrm{mV}$ and $\mathrm{Vo}=10 \mathrm{~V}$. What are the values of A and β ?

UNIT-IV

7. Why +ve feedback is generally used in oscillator circuits? Derive the oscillation frequency of a RC Phase Shift Oscillator.

OR

8. What are the primary requirements to obtain steady oscillation at a fixed frequency? Sketch the topology of a generalized resonant circuit oscillator, using impedance Z_{1}, Z_{2}, Z_{3}. Reduce this circuit to Hartley and Colpitts oscillator choosing components suitably? At what frequency will this circuit oscillate?

UNIT-V

9. Explain the working principle of a push pull power amplifier. Justify your answer mathematically

For a class-B Power Amplifier providing a 22V Peak signal to an 8 load and a power supply of $\mathrm{VCC}=25 \mathrm{~V}$. determine:
(a) Input Power, Pi(dc)
(b) Output Power, $\mathrm{Po}(\mathrm{ac})$ and
(c) Circuit efficiency, \%ๆ.

OR

10. a) Derive the maximum efficiency of a series fed class A Power amplifier.
b) For the circuit shown, calculate the input power, the output power and efficiency of the amplifier for an input voltage resulting in a base current of 10 mA peak.

\square
|| B.Tech. I Semester Supplementary Examinations November 2019
Signals and Systems
(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain how a function can be approximated by a set of orthogonal functions.
b) State and prove any four properties of Fourier Series
2. a) A rectangular function $f(t)$ is defined by $f(t)=1$ for $0<t<\pi$ and -1 for $\pi<t<2 \pi$. Approximate this function by a waveform sint over the interval ($0,2 \pi$) such that the mean square error is minimum
b) Obtain the trigonometric Fourier series for the signal $x(t)$

3. a) State and prove Differentiation and integration properties of Fourier Transform.
b) Discuss about Hilbert transform with required equations

OR

4. a) Analyze how Fourier transform is derived from Fourier series.
b) State and prove time convolution and time differentiation properties of Fourier Transform.

UNIT-III

5. a) State and derive the relationship between bandwidth and rise time.
b) Discuss about distortion less transmission to a system with an example.

OR

6. a) State and prove sampling theorem for band limited signals using graphical approach.
b) Determine output of an LTI system whose input and unit sample response are given as follows: $x(n)=b^{n} u(n)$ and $h(n)=a^{n} u(n)$.

UNIT-IV

7. a) Determine the cross correlation between the two sequences $x(n)=\{1,0,0,1\}$ and $h(n)=\{4,3,2,1\}$
b) Graphically convolve the signals

$$
\begin{aligned}
& X_{1}(t)=\left\{\begin{array}{rr}
1 \text { for }-T \leq t \leq T \\
0 & \text { else where }
\end{array}\right. \text { and } \\
& X_{2}(t)=\left\{\begin{array}{cc}
1 \text { for }-2 T \leq t \leq 2 T \\
0 & \text { else where }
\end{array}\right.
\end{aligned}
$$

8 a) A system with impulse response $e^{-t} u(t)$ is excited by a signal $x(t)=e^{-2 t} u(t)$ Find the output of the system using convolution in time property of Fourier transform.
b) Find the Cross correlation between triangular and gate function as shown in below figure.

9 a) Find the inverse z-transform of $x(z)=\left(z^{2}+z\right) /(z-1)(z-3), R O C: z>3$ using i) Partial fraction method, ii) Residue method 7M
b) State and prove initial value and final value theorems of Laplace transform

OR

10
a) Find the inverse z-transform of $x(z)=\left(z^{2}+z\right) /(z-1)(z-3), R O C: z>3$ using i) Partial fraction method, ii) Residue method and iii) Convolution method9M
b) Find the inverse Laplace transform of $F(s)=(s+4) /(s+3)(s+2) ;-3<\operatorname{Re}(s)<-2 . \quad 5 \mathrm{M}$

