Code: 4G132

II B.Tech. I Semester Supplementary Examinations February 2022

Digital Logic Design

(Computer Science and Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Convert the following numbers into decimals
(i) $(B 65 F)_{16}$
(ii) (127.4)8
(iii) (4021.2) 5
(iv) $(1010110)_{2}$
8M
b) Expand $A+B C^{\prime}+A B D^{\prime}+A B C D$ to MIN TERMS and MAX TERMS.

OR

2. a) Convert the following decimal numbers to base indicated.
i. 7163 to octal
ii. 1762 to hex decimal
7M
b) Find the dual of the following expressions
(i) $\left(X+Y^{\prime}+Z\right)\left(X^{\prime}+Z^{\prime}\right)(X+Y)$
(ii) $\left(A B^{\prime}+C\right) D^{\prime}+E$
7M

UNIT-II

3. a) Show that the dual of the exclusive-OR is equal to its complement
b) Simplify the Boolean function using three variable map $F(X, Y, Z)=\Sigma(0,1,5,7) \quad 7 \mathrm{M}$

OR

4. a) $\begin{aligned} & \text { Make a K-map for the function } F(X, Y, Z, W)=X Y+X Z+Z+X W+X Y ' Z+X Y Z \\ & \text { and realize the minimized expression using NAND gates only }\end{aligned} \quad 7 \mathrm{M}$
b) Simplify the Boolean expression using K-MAP

$$
F(A, B, C, D)=\Sigma m(1,2,3,8,9,10,11,14)+d(7,15)
$$

5. a) Design and draw a Full Subtractor which will use two Half Subtractors?
b) Explain the functionality of a Multiplexer along with applications?

OR

6. a) Realize the function $f(A, B, C, D)=\Sigma m(1,2,3,4,6,7,8,10,12,14,15)$ using $4: 1 \quad 7 \mathrm{M}$
MUX ?
b) Design and implement 4-bit Priority Encoder?

UNIT-IV
7. a) Elaborate about Shift Registers?

7M
b) Define a register. Construct a shift register from S-R Flip-Flops. Explain its working.

OR

8. a) Construct a JK flip-flop using a D Flip-Flop ,a 2-to-1 line multiplexer and an
Inverter?
b) With a neat diagram, explain master slave JK Flip-Flop? 7M

UNIT-V
9. a) Describe about Error detection and correction methods used in logic circuits? 7M
b) Explain about programmable logic devices? 7M

OR
10. a) Explain Ripple counter operation and its applications using a diagram? 6M
b) Elaborate Random access memory and its types with examples? 8M

