Electrical Engineering and Electronics Engineering

(Common to ME, CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I

1. a) Define the following i) Resistance ii) Inductance iii) Capacitance. Also give the V-I relationship for the above elements.
b) Find the equivalent resistance between A \& B terminals.

OR
2. a) Derive the expression for star to delta transformation.
b) Two resistors of each 4 and 2 are connected in parallel across a 10V DC supply. Find the current through each resistor by current division technique.

UNIT-II

3. a) Explain the operation of principle of DC generator.
b) Derive the expression for Torque in a DC Motor.

OR

4. a) Explain the speed control methods of a DC shunt motor.
b) Elaborate about Swinburne's test on dc machine.

UNIT-III

5. A $400 \mathrm{~V}, 10 \mathrm{KVA}, 3-\Phi$ alternator with star connected stator winding has an effective armature resistance per phase of 1.0 . The alternator generates an open circuit voltage per phase is 90 V with a field current of 1.0 A . During the short circuit test, with 1.0 A of field current the short circuit current flowing in the armature is 15A. Calculate
The synchronous impedance B) Synchronous reactance
OR
6. a) Explain the principle of operation of single phase Transformer with neat sketch.
b) Explain Torque-Slip Characteristics of a Three phase induction motor.

> UNIT-IV
7. Explain the operation of Bridge rectifier with relevant diagrams.

OR
8. a) Explain the operation of $\mathrm{P}-\mathrm{N}$ junction diode mentioning its applications.
b) Explain the input and output characteristics of transistor in CE configuration.

UNIT-V

9. Enumerate the applications of dielectric heating and induction heating.

OR

10. a) Describe how voltage, current and time period are measured by using CRO.
b) List the applications of CRO.

Hall Ticket Number :

\square

Code: 4G133

III B.Tech. I Semester Supplementary Examinations May 2019

Principles of Programming Languages

(Computer Science and Engineering)

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) List and explain various factors that influences on Language design?
b) Describe the approach of using Axiomatic semantics to prove the correctness of a given program?

OR

2. a) Explain different aspects of the costs of a Programming Language?
b) Explain syntax of a "for" statement in PASCAL using BNF Notation and Syntax graphs?

UNIT-II

3. a) Briefly explain about Assignment statements and Mixed-mode assignments?
b) What are the design issues of Union?

OR

4. a) How does C support Relational and Boolean expressions?
b) Define Named constant. What are the uses of Named constants?

UNIT-III

5. a) What is the general problem with Static Scoping? What are the advantages and disadvantages of Dynamic Scoping?
b) Define Subprogram. What are the general characteristics of Subprograms?

OR
6. a) List out the design issues for Functions? In what ways are Co- routines different from Conventional Subprograms?
b) What are three Semantic models of Parameter Passing? Illustrate with an Example?

UNIT-IV

7. a) What is Semaphore? Give the solution for Producer-Consumer Problem using Semaphores?
b) What are the differences between a C++ throw specification and a Java throws clause?

OR
8. a) Write and explain about Exception handling in C++ with examples?
b) Define Concurrency? What are the three possible levels of Concurrency in Programs?

UNIT-V

9. a) Write and explain about various features and functions used in ML?
b) Explain the difference between a Depth-first search and a Breadth-first search when discussing how multiple goals are satisfied?

OR
10. State and explain the Data types and Structures used in LISP?

Code: 4G132

II B.Tech. I Semester Supplementary Examinations May 2019

Digital Logic Design

(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) i) Convert (4057.06) 8 to binary code.
ii) What is reflection code? Give Example 7M
b) i) Perform the subtraction in Excess-3 code using the 10's complement method: 597-239.
ii) State De Morgan's theorem for three variables

OR

2. a) i) Prove that $(\overline{A+\overline{B C}})(A \bar{B}+\overline{A B C})=\bar{A} B C$.
ii) Implement OR Gate using NAND Gates 7M
b) i) Reduce the following Boolean expression to 3 literals. [CD' $+A]^{\prime}+A+C D+A B$
ii) Perform subtraction using 2's complement: 1100010-1100111 $7 M$

UNIT-II

3. a) Simplify the following expression into sum of products using Karnaugh map: $F(A, B, C, D)=\Sigma(1,3,4,5,6,7,9,12,13)$
b) Show that the dual of the exclusive-OR is equal to its complement

OR

4. a) Simplify the following Boolean expressions using K-map and implement them using NAND gates: $F(W, X, Y, Z)=X Z+W X Y+W X Y+W Y Z+W Y Z$.
b) Minimize the function $f=\Sigma m(0,2,4,6,7,8,10,12,13,15)$ using K-Map and obtain
SOP form of it

UNIT-III
5. a) Design 4-bit binary to Gray code converter.
b) Implement the function $f(A, B, C)=\Sigma m(0,2,5,7)$ using 4×1 MUX. 7M

OR
6. a) Implement a full-adder circuit with a decoder and two OR gates. 7M
b) Realize the function $\Sigma m(0,3,5,6,7)$ using $8: 1$ multiplexer 7 M

UNIT-IV
7. a) With the help of conversion table, K-map and the logic diagram explain the steps used to convert a J-K flip-flop to a D flip-flop.

7M
b) What is difference between latch and flip flop? Explain about clocked RS flip
flop using NAND gates

OR
8. a) With a neat diagram, explain master slave JK Flip Flop 7M
b) Explain the operation of universal shift register. 7 M

UNIT-V
9. a) Draw and explain the operation of 4 bit ring counter.
b) i) Compare PLA with PROM.
ii) What is ROM? List the different types of ROMs

7M
OR
10. a) Draw and explain 4-bit Johnson counter using D-flip flop. 7M
b) Implement the following functions using PLA.

$$
\begin{aligned}
& A(x, y, z)=\sum m(1,2,4,6) \\
& B(x, y, z)=\sum m(0,1,6,7) \\
& C(x, y, z)=\sum m(2,6)
\end{aligned}
$$

