Hall Ticket Number :

Code: 4G132

II B.Tech. I Semester Supplementary Examinations August 2021

Digital Logic Design

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Demonstrate n's complement and n-1's complement of a number? Explain it with an example?
b) List the truth table for the Boolean function
(i) $F=X Y+X Y^{\prime}+Y^{\prime} Z$
(ii) $F=Y^{\prime} Z+W X Y^{\prime}+W X Z^{\prime}+W^{\prime} X^{\prime} Z$

OR

2. a) Express the following functions as a sum of min terms and as a product of max terms: $F(A, B, C)=B^{l} C+A^{l} C+B C$
b) What is self-complementary code? Explain with the example

UNIT-II

3. a) Why NAND and NOR gates are called as Universal gates? Explain?
b) For the Boolean function $F=A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C$,
(i) Express this function as a sum of Min-terms
(ii) Find the minimal sum-of-products expression.

OR

4. a) Minimize the function $F=\sum m(0,2,4,6,7,8,10,12,13,15)$ using $K-M a p$ and obtain SOP form of it
b) Simplify the following Boolean function together with the don't care conditions and simplify into SOP form
$F(A, B, C, D)=\Sigma m(4,5,6,7,12,13,14), d(A, B, C, D)=\Sigma m(1,9,11,15)$

UNIT-III

5. a) Implement a Full-adder using two Half Adders and one OR gate?
b) Implement a 2-bit Binary Multiplier using logic gates?

OR
6. Design a combinational circuit that generates the 9's complement of a BCD digit?

UNIT-IV

7. a) Explain the Logic diagram of JK Flip-Flop?
b) Draw the excitation table of SR, T and D Flip-Flop?

OR

8. Explain Universal Shift Register with neat diagram?

UNIT-V

9. a) Compare programmable logic devices PROM, PLA and PAL?
b) Explain about Hamming code?

OR

10. Realize the following Boolean function using PROM $F(x, y, z, w)=\Sigma m(0,1,3,6,8,9,15)$.
