Hall	Ticket Number :								7
Code	e: 5GC31							R-15	
	II B.Tech. I Se						Februa	ary 2022	
		Eng		n g Math non to C					
(Common to CE & ME) Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)									
				UNIT–I					
1. a)	Test for co 7x+2y+10z=5		y and	solve	5x+3	y+7z=4	; 3x+	26y+2z=9;	8M
b)	Show that the elements of the	-		of diago	nal mai	trix are	just th	e diagonal	6M
				OR	_				
2. a)	Determine the	e rank of	the ma	trix $\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$	2 3 4 2 6 5				6M
							[1	1 2	
b)	Verify Cayley	y-Hamilto	on theo	orem fo	r the n	natrix 4	$A = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$	1 1 and 3 1	8M
	hence find A ⁴								
				UNIT-II					
3. a)	Find the Cu				takes	the v	alues.	y(0)=1,	7M
	y(1) = 0, y(1)	2) = 1 an	d y(3)	=10					
b)	Using Newto decimal place	=	son Me	ethod,	comput	$e \sqrt{41}$	corre	ct to four	7M
				OR					
4.	Estimate the		· · ·		·			ble by	
	Newton's forv				[]				
	X	20 354	25 332	30 291	35 260	40 231	45 204		1 / 1 /
	У	554		JNIT–III		201	204		14M
5. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given									
				o evalu	late y	(0.1)a	nd y(U.2) given	14M
that $y' = x + y$, $y(0) = 1$									
OR									

6. Using Picard's process of successive approximation, obtain a solution up to fifth approximation of the equation $\frac{dy}{dx} = x + y$ such that y = 1 when x=0.Check your answer by finding the exact solution.

UNIT–IV

- 7. a) Find the Fourier series expansion for $f(x) = e^x$ in 0 < x < 2f 10M
 - b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z = a x + b y + a^2 + b^2$ 4M

OR

- 8. Form the partial differential equation by eliminating arbitrary function from $F(x + y + z, x^2 + y^2 + z^2) = 0$ **UNIT-V**
- 9. a) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial_{u}}, \frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial_{u}}$ 7M
 - b) Evaluate $\int_{c} \frac{e^{z}}{(z-1)^{3}} dz$ with C: $|z-1| = \frac{1}{2}$ using Cauchy's 7M Integral Formula

OR

- 10. a) Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic everywhere.
 - b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} dz$ with C: |z| = 2 using Cauchy's Integral Formula 7M

7M

Code: 5G633	
II B.Tech. I Semester Supplementary Examinations February 2022	
Fluid Mechanics	
(Civil Engineering)	
Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********	
	arks
UNIT–I	
1. State Pascal's law. Derive the equation for the same.	14M
OR	
2. A hot plate of area 0.125m ² is pulled at 0.25m/s with respect to another stationary parallel plate 1mm distant from it the space between the plates containing water of viscosity 0.001 N-s/m ² , find the force necessary to maintain this velocity and also	
calculate power required.	14M
UNIT–II	
3. Define and distinguish between stream line, path line and streak line.	14M
OR	
A. a) State the Bernoulli's theorem write its assumptions.	6M
b) The diameters of a pipe at the sections 1 and 2 are 12cm and 17cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 6m/s. Determine also the velocity at section 2.	8M
UNIT–III	
5. Derive an expression for coefficient of discharge by using venture meter with neat sketch.	14M
OR	
 6. a) Derive an expression for the discharge over a triangular notch. b) During an expression of Clifford of water is flowing a constant of the state water. 	7M
 b) During an experiment 95litres of water is flowing over a right angled notch was collected in two minutes. If the head of the still is 4cm, determine the coefficient of discharge of the notch. 	7M
UNIT-IV	
7. a) Explain about Reynolds Experiment with the help of a neat sketch.	8M
b) Write the characteristics of the laminar and turbulent flows.	6M
OR	
8. The two reservoirs with surface level difference of 20m are to be connected by 1m dia pipe 6km long. Calculate the discharge when a cast iron pipe of roughness k=0.3mm is used. What will be the percentage increase in discharge if cast iron pipe were to be	
replaced by steel pipe of roughness k=0.1 mm . neglect local losses UNIT-V	14M
9. Explain the geometric, kinematic and dynamic similarities.	14M
OR	
10. a) Define the terms: model, prototype, model analysis, hydraulic similitude	6M
 b) A 1/50 model of spillway was made and test was conducted with a water flow rate of 3m³/s. The water velocity was found to be 2m/s. Estimate the water flow rate and velocity of the prototype. 	8M

	Hall Ticket Number :			1
	Code: 5G631	R-1	5	
	Il B.Tech. I Semester Supplementary Examinations Februar Strength of Materials-I (Civil Engineering)	y 2022		_
	Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x	Time: 3 4 = 70 <i> </i>		
	UNIT-I	Marks	со	Blooms Level
1.	Formulate the relationship between shear modulus, bulk modulus and elastic modulus & Also Explain the stress strain relation for mild steel OR	14M	CO1	B2
2.	A bar of 30mm in diameter was subjected to a tensile load of 55kN and the measured extension on 350mm gauge length was 0.15mm and change in diameter was 0.0036mm. Calculate Poisson's ratio and values of three elastic modulii.	14M	CO1	B3
3.	UNIT-II A beam of span 6m which is simply supported at its edges subjected to concentrated loads of 10KN and 20KN at a distance of 2m and 5m respectively from left support, with an overhanging span of 2m from its right support subjected to UDL of 2KN/m at its overhanging span. Determine the maximum bending moment and shear force.	14M	CO2	B1
4.	OR A Cantilever 2 m long carries a uniformly varying load of zero at its free end to maximum of 20kN/m at fixed end. Draw shear force and bending moment diagrams for the cantilever.		CO2	B4
5.	UNIT-III Write down the assumptions of simple bending theory derive the Equation of simple bending Theory OR	14M	CO3	B1
6.	Define section modulus. What is its value for a hollow pipe with external and			
0.	internal diameters as 'D' and 'd'	14M	CO3	B1
7.	Derive the expression for the maximum deflection of a simply supported beam loaded with a central point load using Mohr's theorem. OR	14M	CO4	B1
8.	A cylindrical shaft of diameter made of steel of yield strength 250MPa is subjected to static load consisting of bending moment of 10kN.m and a torsional moment of 25kN.m. Determine the diameter of the shaft using (i) maximum principal stress theory, (ii) maximum shear stress theory and (iii) maximum distorsion energy theory. Take E=200GPa. Poisson;s ratio=0.25 and factor of safety =2.		CO4	В4
9.	State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure.		CO5	B3
10.	OR Draw & Explain Morh's circle when a body is subjected to two mutually perpendicular principal stresses which are unequal & Unlike. ***		CO5	B1

		R-15	
	Lode: 5G632 Il B.Tech. I Semester Supplementary Examinations February	(2022	
	Surveying		
	(Civil Engineering)		
		ime: 3 Hours	
	Answer any five full questions by choosing one question from each unit (5x1	4 = 70 Marks)	
	******		Bloor
		Marks CO	Leve
	UNIT–I		
	Describe the different types of chains used in survey indicate the relative		
	advantages of each.	14M	
	OR		
a) What is closing error' in a traverse?	7M	
b) Describe, with a sketch, how such an error is adjusted.	7M	
	UNIT–II		
	The following perpendicular offsets were taken from a chain line to an irregular		
	boundary line:		
	Chainage (m) $-0.00 - 6.50 - 16.20 - 27.20 - 39.60$		
	Offset (m) $-3.50 - 4.75 - 5.20 - 6.30 - 7.36$.	4 4 1 4	
	Calculate the area between the chain line and the boundary.	14M	
	OR		
	What does the term sensitiveness mean in the context of a bubble? How the sensitiveness of a bubble is is determined?	14M	
		1 - 11 1	
a		7M	
b		7M	
U	OR	/ 101	
a		7M	
b		7M	
U		7 171	
a	UNIT-IV Discuss the methods of tacheometry.	7M	
b		7M	
_	OR	714	
a		7M	
b) What is orientation? What are the methods of orientation? Describe the methods with a sketch.	7M	
		7 101	
	UNIT-V What are the different types of curves? Draw neat sketches of each.	14M	
	OR	14101	
	 a. Explain why superelevation is required in roads and railways. b. What is a transition curve? 		
	c. Why and where are transition curves provided?	14M	
		וידי	

	Ha	all Ticket Number :	1				
	Co	de: 5G634					
Il B.Tech. I Semester Supplementary Examinations February 2022 Building Materials and Construction (Civil Engineering)							
		ax. Marks: 70 Time: 3 Hours nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks) *********					
		UNIT–I	Marks				
1.	a)	Explain about the properties of a good building stone?	7M				
	b)	List out the precautions to be taken in blasting?	7M				
		OR					
2.	a)	Explain in details about the classification of stones with examples.	7M				
	b)	List the properties to be considered before selecting a stone for building?	7M				
		UNIT–II					
3.	a)	Explain in detail about the different types of tiles and its purpose.	7M				
	b)	Describe about Glass, bitumen, alumina and its uses?	7M				
	,	OR					
4.	a)	Briefly explain the constituents of lime stones.	7M				
	b)	Classify lime and explain its uses in different Civil Engineering Projects.	7M				
		UNIT–III					
5.	a)	Briefly explain the structure and parts of timber?	7M				
	b)	Describe the properties of good timber?	7M				
		OR					
6.	a)	Classify and describe knots found in timber based on size and quality?	8M				
	b)	b) Write a short note on methods for determination of moisture content in timber.					
		UNIT-IV					
7	a)	Differentiate between English bond and Flemish bond?	7M				
	b)	Explain the essentials of a good foundation?	7M				
	0)	OR	7 1 1 1				
8.	a)	Distinguish between Stretcher and Header bonds?	7M				
•	b)	Explain mat foundation and the situations where mat foundation is essential.	7M				
	- /						
		UNIT-V					
9.	a)	Discus different types of floors and roofs with uses	7M				
	b)	Explain about different water proofing materials used?	7M				
		OR					
10.	a)	Explain the following items in case of staircases					
	-	(i) soffit (ii) Handrail (iii) pitch (iv) Rise and Tread	8M				
	b)	With the help of a neat diagram explain the components of stair case	6M				
