Hall Ticket Number :	
	R-15
Code: 5GC31 Il B.Tech. I Semester Supplementary Examinations March/April	2023
Engineering Mathematics-III	2020
(Common to CE & ME)	
Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = ********	ne: 3 Hours = 70 Marks)
	Marks
UNIT–I	
1. Find the values of k for which the system of equations (3k-8)x+3y+3z=0;	
3x+(3k-8)y+3z; $3x+3y+(3k-8)z=0$ has a non-trivial solution.	14M
OR	
2. a) Determine the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	
$\begin{bmatrix} 2 & 6 & 5 \end{bmatrix}$	7M
b) Find the Eigen values and eigenvectors of $A = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix}$	
b) Find the Eigen values and eigenvectors of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	7M
UNIT–II	
3. a) Find the Cubic polynomial which takes the values. $y(0)=1$, $y(1)=0$, $y(2)=1$) = 1 and
y(3) = 10	7M
b) Find the real root of the equation $x \log_{10} x = 1.2$ by Regula-falsi method or	
	7M
four decimal places. OR	7 101
4. From the following table, estimate the number of students who obtained mark	(S
between 40 and 45 using Newton's interpolation formula	
Marks 30-40 40-50 50-60 60-70 70-80	
No. of Students 31 42 51 35 31	14M
UNIT–III	
5. Employ Taylor's method to obtain approximate value of y at $x = 0.2$ for the dif	
equation $\frac{dy}{dx} = 2x + 3e^x y(0) = 0$. Compare the numerical solution obtained y	with the
exact solution	14M

OR

Apply Milne's method to find a solution of the equation $y' = x - y^2$ in the range 6. $0 \le x \le 1$ for the boundary conditions y=0 at x=0. 14M

UNIT-IV

7. a) Find the half range cosine series for the function f(x) = x, when 0 < x < f hence

show that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$$

b) Form a partial differential equation by eliminating the arbitrary function ffrom $z = f(x^2 + y^2)$.

8M

6M

7M

14M

OR

8. Using the method of separation of variables, solve

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u \text{ where } u(x,0) = 6e^{-3x}$$
14M

- 9. a) If $u = x^2 + y^2$, find harmonic conjugate v(x, y) and write the corresponding complex potential f(z) = u + iv
 - b) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial_u}, \frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial_u}$ 7M

OR

10. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though C-R equations are satisfied.