Code: 5GC31

|| B.Tech. I Semester Supplementary Examinations March/April 2023

Engineering Mathematics-III

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Find the values of k for which the system of equations $(3 k-8) x+3 y+3 z=0$; $3 x+(3 k-8) y+3 z ; \quad 3 x+3 y+(3 k-8) z=0$ has a non-trivial solution.

OR

2. a) Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
b) Find the Eigen values and eigenvectors of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$

UNIT-II

3. a) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0, y(2)=1$ and $y(3)=10$
b) Find the real root of the equation $x \log _{10} x=1.2$ by Regula-falsi method correct to four decimal places.

OR

4. From the following table, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation formula

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31
UNIT-III					

5. Employ Taylor's method to obtain approximate value of y at $x=0.2$ for the differential equation $\frac{d y}{d x}=2 x+3 e^{x} y(0)=0$. Compare the numerical solution obtained with the exact solution

OR

6. Apply Milne's method to find a solution of the equation $y^{\prime}=x-y^{2}$ in the range $0 \leq x \leq 1$ for the boundary conditions $\mathrm{y}=0$ at $\mathrm{x}=0$.

UNIT-IV

7. a) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
b) Form a partial differential equation by eliminating the arbitrary function f from $z=f\left(x^{2}+y^{2}\right)$.

OR

8. Using the method of separation of variables, solve

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \text { where } u(x, 0)=6 e^{-3 x}
$$

UNIT-V

9. a) If $u=x^{2}+y^{2}$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$
b) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$
10. Show that the function $f(z)=\sqrt{\mid x y} \mid$ is not analytic at the origin even though C-R equations are satisfied.
