Code: 5G634

R-15

II B.Tech. I Semester Supplementary Examinations August 2021

Building Materials and Construction

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit ($5 \times 14 = 70 \text{ Marks}$)

			Marks	со	Blooms Level
		UNIT-I			
1.	a)	Briefly discuss properties of the good building stones for structural requirement of			
		a residential building?	7M	CO1	L2
	b)	What are the various methods of burning of bricks?	7M	CO1	L2
		OR			
2.	a)	What is the composition of good brick earth? Briefly explain function of each component.	7M	CO1	L2
	b)	What are the precautions to be taken while blasting of stones?	7M	CO1	L2
		UNIT-II			
3.	a)	What are the characteristics and uses of roofing tiles?	7M	CO2	L2
	b)	State the general properties and uses of aluminium?	7M	CO2	L2
		OR			
4.	a)	Briefly explain various ingredients of cement?	7M	CO2	L2
	b)	List out the classification of lime? Explain the use of each type in construction work?	7M	CO2	L2
		UNIT-III			
5.	a)	What do you mean by wood? What are its advantages for building construction?	7M	CO3	L2
	b)	What are the alternative materials of wood for building construction briefly explain			
		the properties of any one material?	7M	CO3	L2
		OR			
6.	a)	Differentiate between (i) natural seasoning and artificial seasoning of timber (ii)			
		Soft wood and hard wood?	7M	CO3	L2
	b)	Explain characteristics of good timber?	7M	CO3	L2
		UNIT-IV			
7.	a)	Differentiate between English bond and Flemish bond with the help of sketches?	7M	CO4	L2
	b)	What do you understand by rubble and ashlar masonry? Briefly explain.	7M	CO4	L2
		OR			
8.	a)	Differentiate between spread and mat foundation?	7M	CO4	L2
	b)	List various types of masonry walls and Explain their uses?	7M	CO4	L2
		UNIT-V			
9.	a)	Explain the following items with reference to roofs (i) Lean-to-Roof (ii) Coupled	71.4		1.0
	L	Roofs (iii) Trussed roofs	7M	CO5	L2
	b)	Differentiate between lintel and arches for a buildings with neat sketch?	7M	CO5	L2
40	,	OR			
10.	a)	What is pointing? Discuss the purposes of (i) pointing (ii) formwork and (iii) scaffolding for building works?	7M	CO5	L2
	b)	Sketch following types of stairs cases and explain their uses for buildings (i) Dog			
		legged staircase (ii) Spiral staircases?	7M	CO5	L2

Code: 5GC31						R-15	
Hall Ticket Number :							

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to CE & ME)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. Find the values of for which the equations

(-1)x+(3+1)y+2 z=0; (-1)x+(4-2)y+(+3)z=0; 2x+(3+1)y+3(-1)z=0 are consistent and find the ratios of x:y:z when has the smallest of these values. What happens when has the greatest of these values?

OK

2. Find the characteristic of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and hence find its inverse

UNIT-II

- 3. a) Find a real root of the equation x³-2x-5=0 by the method of false position correct to three decimal places.
 - b) Find the cubic polynomial which takes the following values:

Х	0	1	2	3					
f(x)	1	2	1	10					
OR									

4. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule.

UNIT-III

5. Employ Taylor's method to obtain approximate value of y at x=0.2 for the differential equation $dy/dx=2y+3e^x$, y(0)=0. Compare the numerical solution obtained with the exact solution.

OR

6. Using Runge-Kutta method of order 4, find y for x=0.1,0.2,0.3 given that $dy/dx=xy+y^2$, y(0)=1.Continue the solution at x=0.4 using Milne's method.

UNIT-IV

7. Obtain the Fourier series for f(x) = x in the interval -f < x < f

OR

8. Find the half range sine and cosine series of f(x) = x in 0 < x < 2

UNIT-V

9. Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$ be an analytic function

OR

10. Evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+f^{2}\right)^{2}} dz$ where c is |z|=4

		Hall Ticket Number :	_
		R-15	
		II B.Tech. I Semester Supplementary Examinations August 2021	
		Fluid Mechanics	
		(Civil Engineering)	
		Max. Marks: 70 Time: 3 Hou	
	•	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ************************************	>)
		UNIT-I	
1.		Define manometer. Classify the manometers. Describe the differential manometer with neat sketch?	14M
		OR	14111
2.		An open cylindrical tank of height 4m and cross sessional area 0.1m ² contains water upto a	
		height of 2.5m and above it an oil of specific gravity 0.8 for a depth of 1m. Find the pressure	
		intensity of (i) surface of oil (ii) the interface between the two liquids (iii) the base of the tank.	14M
		LIMIT II	
3.	a)	UNIT-II State the Bernoulli's theorem write its assumptions.	6M
٥.	а) b)	The diameters of a pipe at the sections 1 and 2 are 12cm and 17cm respectively. Find the	Olvi
	D)	discharge through the pipe if the velocity of water flowing through the pipe at section 1 is	
		6m/s. Determine also the velocity at section 2.	8M
4		OR	
4.		State the momentum equation. Explain how you will apply momentum equation for determining the force exerted by a flowing liquid on a pipe bend.	14M
		UNIT-III	
5.		Derive Darcy-Weisbach equation for turbulent flows.	14M
		OR OR	
6.	a)	Classify the various types of orifice?	6M
	b)	A square orifice 1.5 m long is provided in a tank. The water level on one side of the orifice is 1 m above the top edge of the orifice and 0.5 m below the top edge on the other side of the	
		orifice. Find the discharge through the orifice, if Cd = 0.64	8M
		UNIT-IV	
7.		Distinguish between hydrodyanamically smooth and rough boundaries.	14M
•		OR	
8.		Derive the equation for the laminar flow behavior between two parallel plates when one plate is at rest and the other plate is moving.	14M
		place to account and other place to moving.	
		UNIT-V	
9.		Explain different model laws.	14M
		OR	
10.		The pressure drop in an aeroplane model of size 1/40 of its prototype is 80N/cm ² . The	
		model is tested in water. Find the corresponding pressure drop in the prototype. Take density of air as 1.25kg/m ³ and viscosity of air as 1.8 X10 ⁻⁴ poise.	14M

Hall Ticket Number :						D 15
0 - 1 - 50 (21						K-15

Code: 5G631

II B.Tech. I Semester Supplementary Examinations August 2021

Strength of Materials

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

- 1. a) Explain the stress strain relations in 1, 2 and 3 dimesional system?
 - b) Derive the expression for the analysis of uniformly tapered circular rod?

OR

2. Derive the expression for volumetric strain of a rectangular bar subjected to three forces in mutually perpendicular directions?

UNIT-II

3. Draw the shear force and Bending moment diagram, for the beam shown below?

4. A beam of span 6m which is simply supported at its edges subjected to concentrated loads of 10KN and 20KN at a distance of 2m and 5m respectively from left support, with an overhanging span of 2m from its right support subjected to UDL of 2KN/m at its overhanging span. Determine the maximum bending moment and shear force.

UNIT-III

5. A rolled steel joist of I section has top flange: 200×10 mm, bottom flange: 150×10 mm, thickness of web 10 mm and overall depth: 400 mm. Find the maximum shear stress across the section if it is subjected to a shear force of 150 KN. Also, sketch the shear stress distribution across the cross section.

OR

6. An I-Section beam 340mmx200mm has a web thickness of 10mm and flange thickness of 20mm. It carries a shear force of 120KN.Sketch the shear stress distribution across the section.

UNIT-IV

7. Determine the maximum deflection of a cantilever beam subjected to uniformly distributed load over the entire span?

OR

8. A girder of uniform section and constant depth of 400 mm is freely supported over a span of 5 m. Calculate the deflection at four quarter junction points (i.e. x = 1.25m, 2.5m and 3.75m) using moment area method for a uniformly distributed load on it such that the maximum bending stress induced will not exceed 120 N/mm2. Take $E = 2 \times 105$ N/mm2.

UNIT-V

9. Derive the expression for maximum shear strain theory and maximum shear stress theory of failure.

OR

A bolt is subjected to an axial pull of 20 KN together with a transverse shear force of 12KN. Elastic limit for the material in tension 250 N/mm2, Factor of safety is 3 and Poisson's ratio is 0.3.Determine the diameter of the bolt according to a) Maximum principal stress theory and b) Maximum strain energy theory.

	Hall Ticket Number :		R-15							
(Code: 5G632									
	·	ementary Examinations August 202 Surveying	. I							
		ril Engineering)								
	Max. Marks: 70	- · · · · · · · · · · · · · · · · · · ·	e: 3 Hours							
	Answer any five full questions by choosi	ing one question from each unit (5x14 = *********	70 Marks)							
a)	What does traverse surveying mean?	UNIT-I	71							
,	•	Voreo	7 N							
b)) Distinguish between closed and open tra-	OR	710							
	A line was shown to a magnetic bearing	of 38°15' in an old map, when the declination	on was							
		now if the present magnetic declination is 6								
		UNIT-II								
	•	of collimation, reduced level, bench mark, of	•							
	point, and parallax.		14N							
	An execution is to be made for a recon	OR	of oido							
		voir 26m long and 15m wide at the bottom, vation if the depth is 4m. Assume that the								
	surface is level before excavation.	valor ii iio aopii io iiii /iocanio iiai iio	141							
		UNIT-III								
a)	How is the closing error in a traverse bala		71							
b)) What are the fundamental lines of a theo	dolite? What should be the relation between	them 7N							
•		OR								
	ABCDA is a closed traverse in which the bearing of DA and length of BC have not been									
	recorded. The rest of the field records are									
	Line Length(m) Bearin									
	AB 335 181°1 BC ? 90°00									
	BC ? 90°00 CD 408 357°3									
	DA 828 ?									
	Find the missing data.		141							
		UNIT-IV								
	Derive the expressions for horizontal an	d vertical distances in the fixed hair method	d when							
	•	and the measured angle is that of elevation.								
		OR								
a)	What are the errors that may occur in pla	ne tabling?	71							
b)	What are the precautions to be taken in p	plane table surveying?	71							
		UNIT-V								
a)) Why is a curve provided? What is the deg	gree of a curve?	71							
b)	Derive a relation between the radius and		71							
	Two straight lines T. D. and DT. are interes	OR ected by a third line AB, such that ∠PAB = 40	n024'							
	•	om. Calculate the radius of the simple curve								
		B and PT ₂ and the chainages of the point of								
	(T_1) and point of tangency (T_2) , if the chair		141							

2.

7.

10.