Hall Ticket Number :

R-15

Code: 5G538

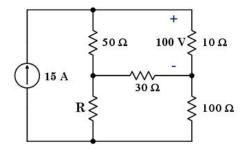
II B.Tech. I Semester Supplementary Examinations October 2020

Electrical Technology & Mechanical Technology

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

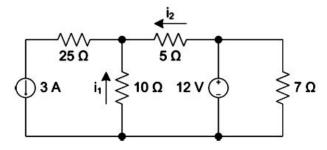
Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)


Use separate booklets for **Part-A & Part-B**

PART-A

UNIT-I

1. a) Calculate the value of R by using KVL, KCL and Ohm's Law?


7M

b) Define what is a motor and a generator and write the difference between DC motor and Induction motor?

7M

OR

2. a) Find the value of currents i₁ and i₂ in the circuit shown below?

7M

b) With a neat sketch explain the construction and operation of DC Generator?

7M

UNIT-II

3. a) Derive the expression for Torque in a 3-phase Induction Motor?

7M

b) Write the differences between alternator and induction motor?

7M

OR

4. a) Explain the construction & principle of operation of transformer with neat diagrams?

7M

b) Explain the principle of operation of Induction Motor with a neat sketch?

7M

Code: 5G538

PART-B

UNIT-III

5. Describe in detail, about any two welding methods which can be adopted for joining nonferrous metals? 14M OR Explain what is the difference between a filler rod and a welding electrode? 7M 6. a) b) What are the shielding gases which are used in TIG welding and what are 7M their characteristics. **UNIT-IV** With suitable diagrams explain the working of a two stroke engine and state 7. its merits and demerits over four stroke engine? 14M 8. a) Explain about Direct and Indirect fuel Injection process in CI engines? M8 Discus about the advantages of a multi stage air compression system over single stage? 6M UNIT-V 9. a) Define COP of a refrigeration system? And briefly explain about reversed Carnot cycle? M8 b) Discus about primary and secondary refrigerants and specify few examples? 6M OR 10. a) Briefly discus about various air conditioning applications? 6M Explain about the working of a summer air conditioning system with neat

sketch?

8M

Н	all Ticket Number :												
<u> </u>	R-15												
Code: 5G633 Il B.Tech. I Semester Supplementary Examinations October 2020													
	Fluid Mechanics												
	(Civil Engineering)												
Μ	Max. Marks: 70 Time: 3 Hours												
Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ********													
	UNIT-I												
a)	U-tube manometer containing mercury was used to find the negative pressure in the pipe containing												
	water. The right limb was open to the atmosphere. Find the vaccum pressure in the pipe if the difference of mercury level in the two limbs was 100mm and height of water in the left limb from the centre of the												
	pipe was found to be 40 mm below.												
b)													
	OR												
	Define total pressure and centre of pressure. Also derive the expressions for the same for an inclined immersed surface.												
	UNIT-II												
a)	Explain the types of flows.												
b)	A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm												
	respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20cm diameter pipe is 2 m/s.												
	OR												
a)	State and prove the Bernoulli's Equation.												
b)	A 300 mm diameter pipe carries water under a head of 20 m with a velocity of 3.5 m/s. If the axis of the												
D)	pipe turns through 450 find the magnitude and direction of the resultant force at the bend.												
	UNIT-III												
a)	Explain major and minor energy losses.												
b)	Derive expressions for calculating loss of energy in a pipe flow during sudden expansion in the pipe and												
	sudden contraction in the pipe.												
	OR												
a)	Differentiate pipes are in parallel and series.												
b)	Derive Darcy-Weisbach equation for turbulent flows.												
	UNIT-IV												
a)	Derive an expression for coefficient of discharge by using venture meter.												
b)	A rectangular notch of crest width 0.4 m is used to measure the flow of water in a rectangular channel 0.6m wide and 0.45m deep. If the water level in the channel												
	is 0.225m above the weir crest, find the discharge in the channel. For the notch												
	assume cd=0.63and take velocity of approach into account												
	OR												
	Derive Hagen-Poiseullie equation from basics.												
	UNIT-V												
	Water is flowing through a pipe of diameter 30 cm at a velocity of 4m/s. Find the velocity of oil flowing in another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes.												
	The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take 'G' of oil as 0.8.												
	OR												

a) What is dimensional analysis? Explain Buckingham's pi theorem.

b) Explain Dimensionless numbers.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

	Hall	Ticket Number :												
		R-15												
Code: 5G631 Il B.Tech. I Semester Supplementary Examinations October 2020														
Strength of Materials-I														
	(Civil Engineering) Max. Marks: 70 Time: 3 Hours													
	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)													

1.	a)	Draw the stress strain diagram for mild steel and explain the salient points.	7M											
	b) A rod of diameter 30 mm and length 400 mm was found to elongate 0.35 mm when it was													
		subjected to a load of 65 kN. Compute the modulus of elasticity of the material of this rod. OR	7M											
2.														
		S = 1.2 x 10-5 per 0C and C = 1.6 x 10-5 per 0C												
	b)	Define strain energy? Derive the formula for the strain energy when a gradual load is	CM.											
		applied? UNIT-II	6M											
3.		Draw shear force and bending moment diagram for the beam shown below. Mark all salient												
		values on them. Comment on point of contra flexure. 10-kN/m												
		50·m 25·m												
		100-m	14M											
		OR												
4.		A simply supported beam AB of span 10 m is subjected to a uniformly distributed load of 30KN/m over the left half of span and a concentrated moment of 50 KN-m acting at a distance of 6 m from left support A. Draw the shear force and bending moment diagrams. Also find the position and magnitude of maximum bending moment.	14M											
5.		A simply supported beam of rectangular cross section 100mm x 200mm deep carries an												
0.		udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm ₂ and in shear is 1 N/ mm ₂ , what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 KN/m is applied OR	14M											
6.	a)	Sketch the shear stress distribution for a circular cross section of dimension 'd	7M											
	b)	What are the assumptions in theory of bending	7M											
7.		A cantilever AB of length L is subjected to a concentrated load of W at C which is at a distance of $L/2$ from fixed end A. Using double integration method, determine the deflection at the free end C \mathbf{OR}	14M											
8.		A simply supported beam AB of span 6 m is subjected to a uniformly distributed load of 30 KN/m												
		over the whole span and a concentrated load of 72 KN acting at a distance of 2 m from the left end A. Determine i. slope of the left support A, and ii. The position and magnitude of maximum deflection. Take E = 200 GPa and I = 16000 cm ₄ . UNIT-V	14M											
9.	a)	The normal stress in two mutually perpendicular directions is 500 N/mm2 and 100 N/mm2 both are tensile the complimentary shear stresses in these directions are the intensity 400 N/mm2. Find the normal and tangential stresses in the two planes which are equally inclined												
	b)	Explain the Mohr's circle of stresses	8M 6M											
4.0		OR State the significance and application of theories of failure. Derive an expression for												
10.		State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure. ***	14M											

	Ha	II Ticket Number :														1
'	Cod	de: 5G632		'						I	1			ı	R-15	
		II B.Tech. I Semester Supplementary Examinations October 2020														
	Surveying															
	Μ	(Civil Engineering) Nax. Marks: 70 Time: 3 Hours														
	7710	Answer all five unit	ts by	cho	osing	gone			n fro	m ec	ach u	nit (5 x 14			

1.	a)	Define Surveying?	Evnl	ain n	rima		NIT-		eurv	evino	n					7M
••	b)	, ,	•	•		•				•		ed.				7M
	٠,	Classify the surveying based on purpose and instruments used. OR														
2.		Explain the principl	le, w	orkin	g an	d use	es of	optic	al so	quare	with	nea	t sketo	ch.		14M
		50					NIT-I									
3.	a)	Define and explain to									-			vo:0 60F	5 1 215	7M
	b)	The consecutive re 1.825, - 0.635, 1.20	•	-			_		•							
		and sixth readings.	. The	thir	d rea	ading	was	take	en or							
		100.000m. Find the	redu	iced I	evels	s of a	ıll oth O	-	ints.							7M
1	٥)	Explain the method	of a	comr	vutati	on o	_		f oar	thwo	rk frai	m the	o conto	our plan		7M
4.	a) b)	•		-										-		/ IVI
	D)	An embankment has side slopes 1.5:1 and is level in the transverse direction. The depths at the centre at 20-m intervals are 1.8m, 2.4m, 3.0m, and 3.6m. Find the volume by trapezoidal														
		formula.												7M		
5.		How many fundame	entals	s line:	s are		VIT-I e in t		olite	and v	what :	are t	hev?	Explain	briefly the	
٥.		How many fundamentals lines are there in theodolite and what are they? Explain briefly the temporary adjustments of theodolite?										14M				
							0	R								
6.		Explain the main pa	arts c	of a th	neodo	olite v	with r	neat o	diagra	am?						14M
7	۵)	Ctata tha advantas		امام	راء ۾ م		VIT-I			. منا ما م	a !a a					71.4
7.	a) b)	State the advantage Explain the method					•	•			•		у.			7M 7M
	D)	Explain the method	ווו פג	praci	lic e t	0 50	o (1		s poi	nt pr	DDIGII	۱.				/ IVI
8.		Derive the condition	of A	nalla	ctic l	ens f			tal ar	ngles						14M
										Ü						
						UI	VIT–V	V								
9.		Draw a simple circula	ar cui	rve, w	rite t	heir e			nd de	erive	the fo	rmula	as of	each ele	ement?	14M
40		What is most by D	00=	0 0£ -	\11m·-	0 D-	O : : : : : :		o#: ~ :-	ob!~	حادارين	ad:	- of	m. (C)		014
10.	a) b)	What is meant by D	-		urve	, De	nve I	is rel	auon	snip '	אונו) ר	auius	s oi cu	ive:		9M 5M
	b)	Explain the principle	- UI E	. וויוט.			*	**								JIVI

													-			
	На	II Ticket Number :]
	Cod	de: 5GC31													R-15]
		II B.Tech. I Semester Supplementary Examinations October 2020														
		Engineering Mathematics-III														
		(Common to CE & ME)														
	Mc	ax. Marks: 70 Answer all five uni	ts by	cho	osin	g on		estic	n fro	m ed	ach (unit (5 x 14		ne: 3 Hours Marks)	
						U	NIT-	ı								
1.	a)	Test for consistency	y and	solv	e 5x-				26y+	2z=9	; 7x+	2y+1	0z=5			8M
	b)	Show that the Eiger	n valu	es o	f dia	gona	l mat	rix ar	e jus	t the	diago	onal e	elemen	its of	the matrix	6M
2.	a)	Find the rank of the	matri	$\lim_{0 \to \infty} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 6 \end{bmatrix}$	2 4 2 8	3 3 1 1 1 7 1 1 7 1 1 1 1 1 1 1 1 1 1 1	$\begin{bmatrix} 0 \\ 2 \\ 3 \\ 5 \end{bmatrix}$ by	R redu	cing	into I	Echel	on fo	orm			7M
								_		_						7 101
	b)	Find the Eigen valu	es an	d eig	genve	ector	s of A	A =	1 2							71.4
3.	a)	Find the Cubic po				U	NIT-	ll		_	y(0)	=1,	y(1)=	= 0,	y(2) = 1 and	7M
		y(3) = 10									, ,		, ,		. ,	7M
	b)	Using Newton-Rapl	hean I	Moth	nod (comr	uito a	/41	corre	ct to	four (decin	nal nlav	202		7M
	-,	Using Newton-Itapi	130111	VICII	iou, t	Jonne	,uie \		COITE	CI IO	ioui	Jecin	iai piai	<i>.</i> cs		7 10
4.		Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$	by usi	ing												
		Trapezoidal rule (ii)	Simp	son'	s 1/ :		e (iii) NIT–I		son'	s 3/ 8	rule.					14M
5.		Using Euler's Met	thod,	find	an	арр	roxim	ate	valu	e of	у с	orres	pondin	g to	x = 1, given	
		$\frac{dy}{dx} = x + y$ and $y =$	1 whe	en x=	=0.											4 4 1 4
		dx					o	D								14M
									. (,		(0) 1	
6.		Use Runge-Kutta m	nethod	d to e	evalu	_			1 y(().2)g	iven	that y	y' = x +	<i>y</i> , <i>y</i>	(0)=1	14M
							NIT-I									
7.		Find the half range	sine a	and o	cosin	e sei	ries o	of f (x) = 1	x in (0 < x	< 2				14M
							0	R								
8.	a)	Find the Fourier ser	ries ex	xpan	sion	for j	f(x)	$=e^{x}$	in 0	< <i>x</i> <	2 <i>f</i>					10M
	b)	Form the partial diffunctions) from $z =$			-		(by	elimi	natin	g the	arbi	trary	consta	ants a	and arbitrary	4M
		raneaene, nem z		,			NIT–	V								710
9.	a)	Apply C-R condition	ns to .	f(z)	$=z^2$				the	functi	on is	anal	ytic ev	erywł	nere.	7M
	b)	Evaluate $\int_{c} \frac{1}{(z-1)!}$	$\frac{1}{(z-3)}$	\overline{S} dz	with	C:	z =	2 usi	ng C	auch	y's Ir	itegra	al Form	nula		7M
							0	R								
10.		Determine p such	that	the	fun	ction	f(z) = -	$\frac{1}{2}\log$	$(x^2 +$	$-y^2$	+ <i>i</i> tar	$n^{-1} \left(\frac{px}{y}\right)$	be	an analytic	
		function														14M
							*	**								