	Hall	Ficket Number :										
		5G634 Il B.Tech. I Semester Supplementary Examinations November 2019										
	Building Materials and Construction											
		(Civil Engineering)										
Ν		Marks: 70 Time: 3 Hours										
	A	nswer all five units by choosing one question from each unit (5 x 14 = 70 Marks)										
		UNIT–I										
1.	a)	Enumerate the characteristics to be considered for selection of stones for various										
		civil engineering works?										
	b)	What are the factors that produce deterio ration of stones?										
-		OR										
2.		What is meant by nominal dimension of a brick? What are the field tests to find the suitability of bricks for construction?										
		-										
3.		UNIT–II What a short account of the process called glazing? What are the considerations										
0.		in choosing glazed tiles for a building?										
		OR										
4.		What are OPC. PPC and PSC? What types of cements are now commonly										
		available in India and used for reinforced concrete construction in India										
		UNIT–III										
5.	a)	What are seasoning and preservation of timber?										
	b)	Describe the commonly used methods of seasoning by preservation timber?										
		OR										
6.	a)	Sketch the cross section of the trunk of a tree and indicate the different parts of a										
		log of wood.										
	b)	Write a short note on methods for determination of moisture content in timber.										
		UNIT–IV										
7.	a)	Give a list of types of bonds in brick masonry.										
	b)	Explain with neat sketches how bonds are provided at connections?										
		OR										
8.	a)	What are the essentials of a good foundation?										
	b)	Derive the expression for depth of concrete block.										
		UNIT–V										
9.		Write down the structural component of a building and explain each in brief.										
		OR										
10.	a)	What are the requirements of good plaster?										
	b)	Mention the tools which are required in the plastering work.										

Hall Ticket Number :						
Code: 5GC31]	U				R-15
II B.Tech. I Semes	ter Supple	ementa	ry Exan	ninations	Novem	ber 2019
	Enginee	-				
Max. Marks: 70 Answer all five units by	-	mmon to one que: *****	stion fron	-	nit (5 x 14	Time: 3 Hours = 70 Marks)
		U	NIT–I			
		[1	2 3			
1. a) Determine the ra	ink of the m	natrix 1	4 2			
1. a) Determine the ra		2	6 5			6N
				□ 1 1	2]	
b) Verify Cayley-Ha	milton theor	em for the	e matrix A	$A = \begin{vmatrix} 3 & 1 \end{vmatrix}$	1 and h	ence find A ⁴ .
				3 3	1	81
		(OR			
2. a) Solve the equation	ons x+2y+3	3z=0;3x+4	y+4z=0;7	7x+10y+1	2z=0	71
				3 1 4	.]	
b) Find the Eigen v	alues and E	Eigen vec	tors $A =$	0 2 6		
				0 0 5		71
		U	NIT-II			
3. From the following	ng table of v	values of	'x' and 'y	', obtain 4	$\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	v_at x=1.5
X 1.5	2.0	2.5	3.0	3.5	4.0	
y 3.375		13.625	24.0	38.875	59.0	14N
y 0.070	7.0		24.0 DR	00.010	00.0	
4. From the following	ng table, es	timate the	e number	of studer	nts who ob	tained marks

between 40 and 45 using Newton's interpolation formula

No. of Students	31	42	51	35	31
Marks	30-40	40-50	50-60	60-70	70-80

5. Using Euler's Method, find an approximate value of y corresponding to x = 1, given $\frac{dy}{dx} = x + y$ and y = 1 when x=0.

OR

6. Using Picard's process of successive approximation, obtain a solution up to fifth approximation of the equation $\frac{dy}{dx} = x + y$ such that y = 1 when x=0.Check your answer by finding the exact solution. 14M

14M

14M

UNIT–IV

- 7. a) Find the half range cosine series for the function f(x) = x, when 0 < x < f hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 8M
 - b) Form a partial differential equation by eliminating the arbitrary function ffrom $z = f(x^2 + y^2)$. 6M

OR

8. Form the partial differential equation by eliminating arbitrary function from $F(x+y+z, x^2+y^2+z^2)=0$ 14M

UNIT-V

9. a) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial_{u}}, \frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial_{u}}$ 7M

b) Evaluate $\int_{c} \frac{e^{z}}{(z-1)^{3}} dz$ with C: $|z-1| = \frac{1}{2}$ using Cauchy's Integral Formula 7M

OR

10. If
$$f(z)$$
 regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$

Hall	Tick	et Number :												[
Code									R-15						
cout		II B.Tech. I S	eme	este	r Suj	ople	mer	ntar	y Ex	amiı	natic	ns N	loven	nber 2019	
		Elect	rica	l Te	chr						ical	Tec	hnolo	ogy	
Ma		1arks: 70				(Ci	vil E	ngin	ieeri	ng)				Time: 3 H	
1410			nits k	by cł	noos	ing c	ne c	quest	tion f	from	eact	n unit	t (5 x 1	4 = 70 Marks	
			l	Use s	sepa	rate		klets		Part-	A & P	art-B			
								ART-							
								UNI	T–I						
1.	a)	Define the fo	ollow	ing t	erms	s 1. V	'oltag	ge 2.	Curi	rent 3	3. Pov	ver 4	. Ener	ду	8M
	b)	Find the curre	ent th	roug	h 2	resis	tance	e in th	ne bel	low c	ircuit k	oy usi	ng Kirc	hhoff's Laws.	
				Г	/	\mathbb{M}	\wedge			//\	\mathcal{M}				
						5Ω			>	5	Ω				
			15	v _	± 		2	Ω ≥	> >			- <u> </u> - 	⁺ 10 V		
								$\overline{\langle}$	>						
															6M
								O							
2.	a)	With a neat			•						•		of DC (Generator?	7M
	b)	Define Ohm	s lav	v and	d Kiro	choff'				n exa	mple	?			7M
3.	a)	Explain the c	onstr	uctio	n & p	rincip	L	UNI ⁻ opera		of tra	ansforr	ner w	/ith nea	t diagrams?	8M
	b)	Explain the o			•	•		•						U	6M
	,	·						O							
4.	a)	Derive the e	xpre	ssio	n for	Torq	ue ir	n a 3-	-phas	se In	ductio	on Mo	otor?		7M
	b)		•				efficie	ency	and	regu	lation	in a	transfo	ormer? Write	
		the necessit	y or (eacn	tern	n <i>?</i>	P	ART-	B						7M
5	a)	Define what	is m	eant	by v	veldir	L	•••••							4M
	b)	Explain abo	ut ar	c we	Iding	, proc	cess	with	suita	able o	diagra	am?			10M
								0							
6	a)	Discus abou			•			•							7M
	b)	Describe wh	at is	MIG	i wel	ding		state UNIT		advai	ntage	s and	d limita	tions?	7M
7.	a)	Give the bas	sic cl	assif	icati	on of									6M
	b)	Explain abo						-		e cyc	le wit	h sui	table d	liagrams?	8M
	,	·				Ū		Ο	R	-				·	
8.	a)	What is the			•			•				Eng	ine? E	xplain about	
		dry sump lul			•				Ū					0 0 1 1	7M
	b)	Explain the applications			•		•	e reo	cipro	catin	g air	com	presso	r? State few	7M
		αρριισατιστιδ		Jubi	0000			UNI	Γ_V						7 111
9.	a)	Define Refri	gera	tion?	' Anc	d list o	L			_ າs of	refrig	erati	on?		6M
	b)		0					••			Ŭ			r absorption	
		refrigeration	syst	em?											8M
								0						,	
10.		Draw the ba		-	it of	an ai	ir coi	nditic	oning	sys ⁻	tem a	ind s	tate th	e functioning	14M
			POIN					****	k						ויודי

Hall	Ticke	et Number :													
Code:	5G6	533	1	1	1				I	J			1	R-15	
		Tech. I Sem	este	er Su							tion	s Nc	vem	ber 2019	
							_	cha neei							
	-	rks: 70 er all five units	s by (choo	·	one	•	stion	•	•	ch u	nit (ł	5 x 14	Time: 3 Hou = 70 Marks)	rs
								UNI	Г—I						
1.	a)	Define total the same for	•					•		. Als	o de	rive	the ex	xpressions for	7M
	b)	Define press static fluid.	sure.	Obta	ain ar	n exp	oress	ion fo	or the	e pre	ssure	e inte	ensity	at a point in a	7M
								OR	2						
2.	a)	Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the centre of the plate is 2 m below											7M		
	b)	Define the te of a floating			-cent	re'. [Deriv	e an	expr	essic	on foi	the	meta-	-centric height	7M
								UNIT							
3.	a)	Explain the o	class	ificat	ion c	f flui	d flov	<i>w</i> in c	letail						7M
	b)					-					-			I given is by	
							•		e poir	nt (2,	3). L	eteri	mine	also the value	
		of stream fu	nctio	nψ	at the	e poir	nt (2,	3).							7M
								OR							
4.	a)	Derive the B	erno	ulli's	equa	ation	for s	tead	y flov	v of a	an in	comp	oressi	ble fluid.	7M
	b)	outlet of the	e ber	nd be	eing	600	mm	and	300	mm	resp	ectiv	ely. F	t the inlet and Find the force bend is 8.829	
		N/cm ² and ra	ate o	f flov	v wat	er is	600	litres	/ s.	٦					7M
5.	2)	Dorivo the D	lorov		chao	h og			-111						7M
5.	a) b)	Derive the D				•			n tw	n tan	ke v	whick	are	connected by	7 111
	D)	three pipes 300mm, 200	in se) mm ction	eries and facte	of le 400 ors a	ngth mm re 0.0	s 30 resp 02, 0	0 m, ective .0208	170 ely, is 3 anc	m a s 12 r	nd 2 m. D	210 n etern	n and nine tl	l of diameters he rate of flow y, considering	7M
								OR	2						

7M

7M

7M

- 6. a) A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used to measure the flow of water. The reading of differential manometer connected to inlet and throat is 10 cm of mercury. Determine the rate of flow. Take $C_d = 0.98$.
 - b) Water flows through a triangular right-angled weir first and then over a rectangular weir of 1 m width. The discharge co-efficients of the triangular and rectangular weirs are 0.6 and 0.7 respectively. If the depth of water over the triangular weir is 360 mm, find the depth of water over the rectangular weir.

UNIT-IV

- 7. a) Describe the Reynolds' experiment with a neat sketch.
 - b) Derive an expression for the velocity distribution for viscous flow through a circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.
 7M

OR

- 8. a) Calculate: (i) the pressure gradient along the flow, (ii) the average velocity and (iii) the discharge for an oil of viscosity 0.02 Ns/m² flowing between two stationary parallel plates 1 m wide maintained 10 mm apart. The velocity midway between the plates is 2 m/s.
 7M
 - b) Explain with a neat sketch, hydrodynamically smooth and rough boundaries. 7M

UNIT–V

- 9. a) Explain the Buckingham's theorem of dimensional analysis. 7M
 - b) The resisting force R of a supersonic plane during flight can be considered as dependent upon the length of the aircraft I, velocity V, air viscosity µ, air density and bulk modulus of air K. Express the functional relationship between these variables and the resisting force by using Buckingham's theorem.

OR

- 10. a) Explain the geometric, kinematic and dynamic similarities.7M
 - b) In a 1:30 model of a spillway, the velocity and discharge are 1.5 m/s and 2m³/s.
 Find the corresponding velocity and discharge in the prototype.
 7M

Hall 7	Ticke	t Number :	
ode:	5G6	31 R-15	
I	II B.T	ech. I Semester Supplementary Examinations November 2019	
		Strength of Materials-I	
Лах.	Mar	(Civil Engineering) ks: 70 Time: 3 Hou	irs
Ar	nswe	r all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT-I	
1.	a)	Draw the stress – strain diagram for mild steel specimen and discuss salient	
		points on it.	7
	b)	Find the elongation in a round bar 50 mm diameter subjected to an axial load	
		of 60 kN. Also find the values of modulus of rigidity and bulk modulus taking	_
		Poisson's ratio as 0.3 and modulus of elasticity as 200 GPa.	7
2.	a)	OR A compound bar is made of 60 mm wide and 10 mm thick plate placed on	
۷.	u)	60mm wide and 10 mm thick copper plate placed one above the other. The	
		ends are rigidly fixed and the length of the compound bar is 600 mm. The	
		compound bar is stress free at 30° C. Find the stresses induced in the steel	
		and copper plates if he temperature is raised to 90° C. Take Es = 2 x 10^{5} MPa, Ec = 1x10 ⁻⁵ MPa, s=12x10 ⁻⁶ / $^{\circ}$ C and c=18x10 ⁻⁶ / $^{\circ}$ C	7
	b)	Derive an expression for strain energy for a member subjected to a gradually	
	0)	applied axial load.	7
		UNIT–II	
3.	a)	Draw the shear force and bending moment diagrams for a cantilever beam of	
		length 'l' subjected to a point load 'W' at its free end.	2
	b)	A simply supported beam of length 1 m is supported at its ends and carries	
		concentrated loads of 30 kN and 60 kN at distances 300 mm and 750 mm from	
		left support. Draw the shear force and bending moment diagrams indicating their values at salient points.	10
		OR	-
4.	a)	Draw the shear force and bending diagrams for a simply supported beam of	
		length 'l' subjected to an UDL of 'w' N/m over entire span.	6
	b)	A cantilever beam of length 1.2 m carries a concentrated load of 30 kN at a	
		distance of 0.3 m from fixed end and a uniformly distributed load of 10 kN/m over a span of 0.4 m starting from free end. Draw the shear force and bending	
		moment diagrams indicating the values.	8
		UNIT-III	
5.	a)	Sketch the bending stress distribution in a beam of rectangular cross section.	4
	b)	A simply supported beam of rectangular cross section 200 mm wide and	
	-	300mm deep, supports a UDL of intensity 'w' N/m length over a span of 4 m.	
		Calculate the safe intensity of the UDL if he allowable bending and shear	
		stresses are 90 MPa and 30 MPa respectively.	10

Т

7

Т

٦

10M

14M

4M

Code: 5G631

- 6. a) Sketch the shear stress distribution for a circular cross section of diameter 'd'. 4M
 - b) A simply supported beam of I-section and 1.2 m long, has each flange as 200 mm wide and total depth of 400 mm, with flanges and web thickness of 20 mm each. It carries a central load of 60 kN. Find the maximum bending stress induced.

UNIT-IV

- a) Derive the differential equation for elastic curve of a beam subjected to transverse loading.
 - b) A cantilever beam of length 'L' carries a udl of 'w' N/m over entire span.
 Determine the deflection and slope at the free end.
 8M

OR

A simply supported beam of length 1.2 m is supported at its ends and carries concentrated loads of 10 kN and 30 kN at distances 400 mm and 800 mm respectively from left support. The moment of inertia of the section is 1.6x10⁹mm⁴ and E = 210 GPa. Find the deflection of the beam at load points. 14M

UNIT-V

- An element is subjected to the following stresses: 90 MPa in X-direction, 60 MPa in Y-direction and a complementary shear stress of 30 MPa on these planes. Find:
 - i) Normal and shear stresses along a plane inclined at 30^o with the plane of 90MPa.
 - ii) Maximum and minimum principal stresses and
 - iii) Maximum shear stress.

OR

- 10. a) Explain the following theories of failure:
 - i) Maximum normal stress theory and
 - ii) Von Mises Theory
 - b) A bolt is subjected to a tensile load of 12 kN and a transverse shear load of 6kN. Find the core diameter of the bolt according to :
 - i) Maximum normal stress theory and
 - ii) Maximum shear stress theory.

Take allowable normal and shear stresses for the bolt material as 90 MPa and60 MPa respectively.10M

Hall Tick	ket Number :					-					
Code: 5G	632					R-15					
II B	.Tech. I Semester	r Supplem	entary Exc	amination	s Novem	ber 2019					
			urveying								
		(Civi	I Engineerir	ng)							
Max. Mc		hoosing on	o question fr	om og ob u	nit / E v 1 /	Time: 3 Hou	rs				
Answ	er all five units by c	noosing on	# 406211011 11	omeachu	nii (5 x 1 4	= 70 Marks j					
			UNIT-I								
1. a)	Describe about the	various typ	es of tape co	prrections in	chain surv	eying.	5N				
b)	The area of the pla	an of an old	survey plot	ed to a sca	le of 10 m	etres to 1 cm					
,	measures now as	100.2 sq.cm	n as found by	/ a planime	ter. The pla	an is found to					
	have shrunk so tha	•	-	0	asures 9.7	cm only. Find					
	(i) the shrunk scale	e, (ii) true are	ea of the surv	/ey.			4N				
c)	What are the vario	us types of a	chains? Desc	ribe them.			5N				
			OR								
2. a)	Write the difference	e between p	rismatic and	surveyors o	ompass.		5N				
b)	Following are the bearings taken in a closed compass traverse.										
- /	J	Line	F.B.	B.B.							
		AB	S37º30 E	N37º30 W	_						
		BC	S43º15 W	N44º15 E							
		CD	N73º00 W	S72º15 E							
		DE	N12º45 E	S13º15 W							
		EA	N60º00 E	S59º00 W							
	Compute the interio	or angles ar	id correct the	m for obser	vational er	rors.	7N				
c)	Write the relations	between W	hole Circle a	and Reduce	d Bearing	System in all					
	quadrants.						21				
			UNIT–II								
3. a)	Discuss the Trapez	zoidal rule fo	or calculating	area.			31				
b)	A series of offsets	were taken	from a cha	in line to a	curved bo	undary line at					
,	intervals of 15 meter					•					
	5.85 m Compute th					-					
	end offsets by (i) A	verage ordir	nate rule, (ii)	Trapezoidal	rule, and (iii) Simpson's					
	rule.						71				
c)	A railway embankr		•								
	the side slope 2 to	1. The groui	nd levels at e	very 100 m	along the o	centre line are					

as under:

Distance	0	100	200	300	400
R.L.	204.8	206.2	207.5	207.2	208.3

The formation level at zero chainage is 207.00 and the embankment has a rising gradient of 1 in 100. The ground is level across the centre line. Calculate the volume of earthwork.

4M

			1002
4.	a)	What are the different types of Bench Marks? Explain them.	ЗM
	b)	The following staff readings were observed successively with a level, the instrument having been moved after third, sixth and eighth readings : 2.225 ; 1.605 ; 0.990 ; 2.090 ; 2.865 ; 1.260 ; 0.600 ; 1.980 ; 1.045 ; 2.685 meters.	
		Enter the above readings in a page of a level book and calculate the R.L. of points if the first reading was taken with a staff held on a bench mark of 432.384 m.	7M
	c)	Write the uses of contour maps.	4M
		UNIT–III	
5.	a)	Discuss the method of repetition for measuring the horizontal angle.	7M
	b)	Write the functions of theodolites.	7M
		OR	
6.	a)	Write down the procedure of measuring deflection angles by theodolite with diagram.	7M
	b)	Explain the errors in theodolite work.	7M
		UNIT-IV	
7.	a)	What are the errors in plane tabling?	5M
	b)	Write the advantages and disadvantages of plane tabling.	5M
	c)	Explain temporary adjustment and setting up of plane table in the field.	4M
		OR	
8.	a)	A tacheometer was set up at station P and observations were made to a staff held normal to the line of sight over point Q. The vertical angle measured was 6°36'. The three hair readings were 1.905, 2.480, and 3.055. The reading from P, with the line of sight horizontal to a BM of RL 852.55 was 1.855. If the	
		instrument constants are 100 and 0.5, find the RL of Q.	5M
	b)	Write the advantages and disadvantages of subtense method over stadia method.	2M
	c)	Explain the principle of stadia method.	7M
		UNIT-V	
9.	a)	Write the relation between degree and radius of curve.	ЗM
	b)	A road 8 m wide is to deflect through an angle of 60° with the centre line radius of 300 m, the chainage of the intersection point being 3605.0 m. A transition curve is to be used at each end of the circular curve of such a length that the rate of gain of radial acceleration is 0.5 m/s ³ , when the speed is 50 km/h. Find out:	
		(i) Length of the transition curve	
		(ii) Superelevation(iii) Chainage of all junction points.	
		(iv) Offsets at $x = L/4$, $L/2$, $3L/4$ and L	7M
	c)	Discuss the various types of vertical curve.	4M
	,	OR	
10.	a)	Write the methods of ranging of simple circular curve with proper sketch.	7M
	b)	Two straight AB and BC intersect at a chainage of 4242.0 m. The angle of intersection is 140°. It is required to set out a 5° simple circular curve to connect the straights. Calculate all the data necessary to set out the curve by the method of affacts from the chard produced with an interval of 20 m.	714

of offsets from the chord produced with an interval of 30 m. 7M

Code: 5G632