Code: 5GC31

II B.Tech. I Semester Supplementary Examinations November 2023

Engineering Mathematics-III

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the Eigen values and eigenvectors of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
b) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$

OR
2. a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]$ and hence find A^{4}.
b) Investigate the values of λ and so that the equations

$$
2 x+3 y+5 z=9 ; \quad 7 x+3 y-2 z=8 ; \quad 2 x+3 y+\lambda z=
$$

have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions

UNIT-II

3. a) Find a root of the equation $x^{2}-4 x-9=0$ using bisection method correct to three decimal places
b) Find the missing term in the table

x	2	3	4	5	6
y	45	49.2	54.1	-	67.4
OR					

4. From the following table of values of ' x ' and ' y ', obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.5$

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

UNIT-III
5. Using Euler's Method, find an approximate value of y corresponding to $x=1$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $\mathrm{x}=0$.

OR

6. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=e^{x}$ in $0<x<2 \pi$
b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=a x+b y+a^{2}+b^{2}$
8. Form the partial differential equation by eliminating arbitrary function from

$$
F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0
$$

UNIT-V

9. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic everywhere.
b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with $\mathrm{C}:|z|=2$ using Cauchy's Integral Formula
10. a) Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate function
b) Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ with $\mathrm{C}:|z|=3$ using Cauchy's Integral Formula
