Hall	Ticke	et Number :	
		R-15	
Code		5.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
		Engineering Mathematics-III	
		(Common to CE & ME)	
		Inte: 3 Hours	
Answ	er al	ny five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT-I	
1.	a)	Show that the Eigen values of diagonal matrix are just the diagonal elements	
		of the matrix	7N
		Determine the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$	
	b)	Determine the rank of the matrix $\begin{bmatrix} 1 & 4 & 2 \\ 2 & 5 & 5 \end{bmatrix}$	
			7N
2.	2)	OR Investigate the values of μ so that the equations	
Ζ.	a)	$2x+3y+5z=9$; $7x+3y-2z=8$; $2x+3y+z=\mu$	
		have (i) no solution (ii) a unique solution and (iii) an infinite number of	
		solutions	71
	b)	Solve the equations $x+2y+3z=0$; $3x+4y+4z=0$; $7x+10y+12z=0$	7N
		UNIT–II	
3.	a)	Find the missing term in the table	
		x 2 3 4 5 6 y 45 49.2 54.1 - 67.4	7N
	b)	Find the Cubic polynomial which takes the values. $y(0)=1$, $y(1)=0$,	,
	~)		
		y(2) = 1 and y(3) = 10	71
4.		OR Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's	
ч.		Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula.	
		x 20 25 30 35 40 45	
			14N
5.		Using Euler's Method, find an approximate value of y corresponding to $x = 1$,	
		given $\frac{dy}{dx} = x + y$ and $y = 1$ when x=0.	
		un I	14N
6.		OR Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$,	
		y(0) = 1	
			14N
7	c)	UNIT-IV	
7.	a)	Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z = a x + b y + a^2 + b^2$	E N
		and disting function of from $z = ux + by + u + b$	5N

b) Find the half range cosine series for the function f(x) = x, when

$$0 < x < f$$
 hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 9M

8. a) Form a partial differential equation by eliminating the arbitrary functions
from
$$z = f(x+at) + g(x-at)$$
7M
b) Obtain the Fourier series for $f(x) = x$ in the interval $-f < x < f$
7M

UNIT-V
9. a) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} dz$ with C: $|z| = 2$ using Cauchy's Integral Formula
7M
b) Using Cauchy's Integral Formula $\int_{c} \frac{\sin^{2} z}{(z-\frac{f}{6})^{3}} dz$ Evaluate where C is Unit
Circle.
7M
10. If $f(z)$ regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) |f(z)|^{2} = 4 |f'(z)|^{2}$
14M
