Code: 5GC31

|| B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

Engineering Mathematics-III

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT-I

1. a) Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix
b) Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$

OR
2. a) Investigate the values of λ and so that the equations

$$
2 x+3 y+5 z=9 ; 7 x+3 y-2 z=8 ; \quad 2 x+3 y+\lambda z=
$$

have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions
b) Solve the equations $x+2 y+3 z=0 ; 3 x+4 y+4 z=0 ; 7 x+10 y+12 z=0$

UNIT-II

3. a) Find the missing term in the table

x	2	3	4	5	6
y	45	49.2	54.1	-	67.4

b) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0$, $y(2)=1$ and $y(3)=10$

OR

4. \quad Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward and backward interpolation formula.

x	20	25	30	35	40	45
y	354	332	291	260	231	204
UNIT-III						

5. Using Euler's Method, find an approximate value of y corresponding to $x=1$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $\mathrm{x}=0$.

OR

6. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y$, $y(0)=1$

UNIT-IV

7. a) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=a x+b y+a^{2}+b^{2}$
b) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
8. a) Form a partial differential equation by eliminating the arbitrary functions from $z=f(x+a t)+g(x-a t)$
b) Obtain the Fourier series for $f(x)=x$ in the interval $-\pi<x<\pi$

UNIT-V

9. a) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with $\mathrm{C}:|z|=2$ using Cauchy's Integral Formula
b) Using Cauchy's Integral Formula $\int_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ Evaluate where C is Unit Circle.

OR

10. If $f(z)$ regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
