Н	all T	icket Number :]		
C	ode.	5G234	I	I	<u>I</u>	<u> </u>	1	1	<u> </u>		I	J	1	R-15	
0	Juc.	II B.Tech. I Se	mes	ster	Supi	oler	nen	tary	Exa	min	atic	ons F	ebru	ary 2022	
					Elec		-	-							
	Aav	Marks: 70	(El€	ectri	cal d	and	Elec	tron	ics E	ngir	neeri	ng)		Time: 3 Hour	
		er any five full qu	vestic	ons b	y ch	oosir		ne qı ****	Jesti	on fr	om e	each	ı unit (-
						ſ		NIT-I							
1.	a)	State and explain	n vec	tor fo	orm o	f Col	ulom	os lav	v?						4M
	b)	Derive the expression of the expression of the second seco	away	y fror											
		charge density o	f _s C	C/m ² .											10M
2.	a)	The flux density	D_r/?	R a n	C/m^2	in fr		OR	Find						
۷.	a)	(i) E at r=0.2		Jarn	0/III		50 34	<i>acc</i> .	i ina						
		(ii) The total				•		•			m				
	b)	(iii) The total		•							0 (10 m	otora Find the	10M
	b)	Six equal charge potential at the o					Juale	u ai	x=0,	0, 7	, 0, 3	and			4M
							UN	NIT-II							
3.	a)	Deduce the bou component?	ndary	/ con	nditior	ns fo	r die	lectrio	c to c	lieleo	ctric v	with t	angen	tial and normal	7M
	b)	Derive the equat	ion fo	or ca	pacita	ance		•	allel	trans	miss	ion li	nes.		7M
	-)		•	(D'-	1 1 - 1			OR							- 14
4.	a) b)	State the propert Derive the Ohm's					terial	S							5M 9M
	0)	Derive the Onins	5 10 10	mρ		////? [UN	IT-II	I						9101
5.	a)	Derive and expl	ain t	he re	elatio	nship				gnetio	c flux	k, ma	gnetic	Field Intensity	
		and Magnetic Flu	ux de	nsity	•								•	-	7M
	b)	Describe the few	/ appl	licatio	ons o	f Am	•		cuital	law?					7M
6	2)	State and evolution	n Am	noro	o oiro	uital		OR							714
6.	a) b)	State and explain Explain vector m		•				rive it	S OY	ress	ion				7M 7M
	0)		agne	no p	otoriti			I IT–I \		1000					7 101
7.		Explain the mag	netiza	ation	and o	dema				usin	g B-H	l cur	ve with	neat diagram.	14M
								OR							
8.	a)	Derive Lorentz F	orce	Equa	ation.										8M
	b)	Calculate the inc permeability of 1								ngth,	2 cr	n in	radius	having relative	6M
		permeability of 1	00 ai	iu ca	uryni	J 000		IIT-V	1						0101
9.	a)	State and explain	n Far	aday	s law	s of				c ind	uctio	n.			7M
	b)	A circular loop	of 1	0 cn	n rac	lius	is lo	cated	in i	the	x-y p	blane	in a	field given by	
		\overline{B} =0.5cos377t(3	8a _y +4	a _z) T	esla.	Find	the e		nduce	ed in	the lo	oop.			7M
~	-	Otata and I !						OR	- 1 !						
0.	a) b)	State and explain			-			•	•			0000	o find		7M
	b)	Given a time va average power a					•					•			7M
		. .	`	-		Ŭ	*	**		-					

Hall	Ticket Number :	
) od	e: 5G232	
200	Il B.Tech. I Semester Supplementary Examinations February 2022	
	Electrical Machines-I	
	(Electrical and Electronics Engineering)	
	x. Marks: 70 Time: 3 Hours	
Ansv	wer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
-)	UNIT-I	
a)	Explain the principle of energy conversion of electromechanical system.	
b)	Write energy balance equation. OR	
a)	Explain the construction of a DC machine with neat sketch & explain the function of each part in detail.	
b)	Compare the Lap and Wave windings	
	UNIT–II	
a)	Derive the E.M.F Equation in DC generator.	
b)	An 8-pole DC Generator has per pole flux of 30 mWb and winding is connected in lap with 600 conductors. Calculate the generated E.M.F on open circuit when it runs at 500 rpm. If	
	armature is wave wound at what speed the machine be drive to generate same E.M.F.	
	OR	
a)	Explain any two methods of improving the commutation	
b)	An 8 pole generator has an output of 200A at 500V; the lap connected arm has 1280 conductors, 160 commutator segments. If the brushes are advanced by 4 segments from the no load neutral axis, estimate the armature demagnetizing and cross-magnetizing ampere	
	turns/pole.	
a)	Explain the voltage build up process in separately excited generator & also state the causes	
a)	why self excited generator fails to develop the voltage?	
b)	Explain the external and internal characteristics of DC shunt generator	
	OR	
a)	Explain the advantages & disadvantages with the parallel operation of DC generators.	
b)	Two D.C shunt generators with E.M.F's of 120 V and 115 V, armature resistance of 0.05 ohms and 0.04 ohms and field resistances of 20 ohms and 25 ohms respectively are in	
	parallel supplying a load of 25 kW. How do they share load?	
	UNIT–IV	
a)	Explain the working principle of DC motor.	
b)	A 250V DC shunt motor on no load runs at 1000 r.p.m and takes a current of 5A. The	
	armature & field resistances are 0.25 & 250 respectively. Calculate the speed of a motor when it takes a current of 41A. the armature reaction weakens the flux by 4%.	
	OR	
	Explain the various method of speed control used for D.C. shunt motor. Discuss	
	their merits & demerits	
,	UNIT-V	
a)	Explain the Swinburne's test with neat sketch	
b)	When running on no-load, a 400-V shunt motor takes a current of 5A. armature resistance is 0.5 & filed resistance is 200 . Find the output of a motor & efficiency when running on full load & taking a current of 50 A. also find the % change in speed from no load to full load.	
ə)	OR What is Hopkinson's test? What are the advantages of this method of testing?	
a) b)	What are the various methods of finding inertia of motor? Explain any one method.	
b)		

	all Ticket Number :	R-15	
C	Dde: 5G539 II B.Tech. I Semester Supplementary Examinations February	v 2022	
	Fluid Mechanics and Hydraulic Machines	2022	
	(Electrical and Electronics Engineering)		
		ime: 3 Hours	
A	nswer any five full questions by choosing one question from each unit (5x1-	4 = 70 Marks)
		Marks CO	Blo
	UNIT–I		L
. a)	Define the following properties of the fluid.		
	i) Specific Weight ii) Specific Gravity iii) viscosity		
	iv) Surface Tension	8M	
b)	Calculate the Density, Specific weight and Specific gravity of		
2)	One liter of liquid, which weighs 7N.	6M	
	OR		
. a)			
. а)	Explain the property viscosity of a fluid. Also describe its variation with temperature.	7M	
۲	-		
b)	The dynamic viscosity of an oil used for lubrication between a		
	shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 r.p.m. Calculate the power lost in the		
	bearing for a sleeve length of 90 mm. The thickness of oil film		
	is 1.5 mm.	7M	
	UNIT–II		
		714	
. a)	Explain the minor losses in pipes briefly.	7M	
b)	At a sudden enlargement of water main from 240 mm to 480		
	mm diameter, the hydraulic gradient rises by 10 mm. Estimate	714	
	the rate of flow.	7M	
	OR		
•	State the Bernoulli's theorem and derive the Bernoulli's		
	equation completely from the fundamental Euler's equation of		
	fluid motion.	14M	
	UNIT–III		
. a)	Derive an expression for force exerted by the jet on the flat		
	vertical plate moving in the direction of the jet.	8M	
b)	A nozzle of 50 mm diameter delivers a stream of water at		
	20 m/sec perpendicular to the plate that moves away from the		
	jet at 5m/sec. Find i) the force on the plate ii) the work done		

- 6. a) What is pumped storage power plant and explain its concept. 7M
 - b) Describe the various storage requirements of hydroelectric power station.

UNIT-IV

7. a) Explain the various parts of Pelton turbine and its working with the neat sketch.

b) A Pelton wheel has a mean bucket speed of 10m/sec with a jet water flowing at the rate of 700 liters per second under a head of 30 meters. The bucket deflects the jet at angle of 160[°]. Calculate the power given by the water to the runner and the hydraulic efficiency of the turbine. Assume coefficient of velocity as 0.98.

OR

- 8. a) Define the unit quantities and describe them with expressions 8M
 - b) A turbine develops 500 kW power under a head of 100 meters at 200 r.p.m. What would be its normal speed and output under a head of 81 meters 6M

UNIT-V

- 9. a) Explain the working principle of single acting reciprocating pump with neat sketch. b) Define indicator diagram and also show that area of indicator
 - diagram is proportional to the work done by the reciprocating pump.

OR

- 10. a) Define slip, percentage of slip and negative slip of the reciprocating pump
 - b) A single acting reciprocating pump running at 50 r.p.m., delivers 0.01 m³/sec of water. The diameter of the piston is 200 mm and stroke length 400 mm. Determine:

i) The theoretical discharge of pump ii) coefficient of discharge iii) slip and percentage of slip of the pump. 7M

6M

7M

8M

7M

7M

7M

			R-15		
	Co				
		II B.Tech. I Semester Supplementary Examinations February	y 2022		
		Switching Theory and Logic Design (Electrical and Electronics Engineering)			
	١		Time: 3	Hours	
	A	nswer any five full questions by choosing one question from each unit (5x1	4 = 70 N	1arks)	

			Marks	CO	
		UNIT–I			
	a)	State and prove Demorgan's theorems for three variables.	7M		
	b)	What are Universal gates? Realize AND and OR gates using NOR gates.	7M		
		OR			
	a)	i) Convert the hexadecimal number 68BE to binary and convert it from			
		binary to octal ii) Express the number (26.24) ₈ in Decimal			
		iii) Implement AND Gate using NAND Gates.	7M		
	b)	Obtain the			
	/	i) 1's and 2's complement of 11011010			
		ii) 9'S and 10'S Complement of 12345678	7M		
		UNIT–II			
5.	a)	Simplify the following Boolean functions to minimum number of literals.			
		i. $F = ABC + ABC' + A'B$.			
		ii. $F = (A+B)' (A'+B')$.	8M		
	b)	What is K-map? State advantages and limitations of K-map?	6M		
		OR			
•	a)	Simplify the following Boolean function for minimal SOP form using K-map			
	հ)	and implement using NAND gates. $F(WXYZ) = (1,3,7,11,15) + d(0,2,5)$ Define prime implicant and essential prime implicant with example using K-	8M		
	b)	map.	6M		
		UNIT–III			
	a)	Implement full adder circuit using 3X8 Decoder.	7M		
	b)	Implement the following Boolean functions using PROM			
		$F_1(A_1,A_0) = m(1,2) F_2(A_1,A_0) = m(0,1,3).$	7M		
		OR			
•	a)	Design 2x4 decoder using NAND gates.	7M		
	b)	Realize the following functions using PLA			
		f1 (A, B, C) = $(0, 2, 4, 5)$ f2 (A, B, C) = $(1, 5, 6, 7)$.	7M		
	,	UNIT-IV			
•	a)	Compare Synchronous and asynchronous sequential circuits.	7M		
	b)	Differentiate between positive edge triggered and negative edge triggered flip- flops	7M		
		OR	7101		
	a)	Draw the excitation tables of SR, JK and T flip flops.	7M		
•	b)	Explain the operation of twisted ring counter with the help of logic diagram			
	~)	and its timing diagrams.	7M		
		UNIT-V			
	a)	Explain the salient features of ASM chart.	7M		
	b)	List the capabilities and limitations of finite state machines.	7M		
		OR			
	a)	Explain the minimization procedure for determining the set of a completely			
		specified sequential machine.	7M		
	b)	What are the rules to convert Mealy to Moore model?	7M		

		II Ticket Number : R-15	
	Co	de: 5G233 II B.Tech. I Semester Supplementary Examinations February 2022	
		Electrical Circuits-I	
		(Electrical and Electronics Engineering)	
	Μ	ax. Marks: 70 Time: 3 Hours	S
	Ar	swer any five full questions by choosing one question from each unit $(5x14 = 70 \text{ Marks})$)
		*****	Mark
		UNIT–I	
•		Define the following terms	
		Tree (ii) Branch (iii) Link (iv) Loop (v) Graph(vi) Cut set and (vii) Tie set	141
		OR	
2.		Draw Graph Tree and find the basic cutest matrix for the given electrical network below.	
		······································	
		20	
		2001 − 200	
			141
			1-11
3.	a)	With neat diagrams explain different types of alternative signals and also explain about	
	- ,	phase difference.	71
	b)	Explain the significance of operator j in ac circuits	71
		OR	
	a)	Give the detailed comparison of series and parallel resonant circuits.	71
	b)	Two impedances $Z_1=(8+j6)$ ohms and $Z_2=(4-jX_c)$ ohms are connected in parallel. Find	
		the value of X_c such that the circuit resonates.	71
		UNIT–III	
5.	a)	State and explain Nortons theorem.	71
	b)	Verify Nortons theorem for the given circuit to find the current through load resistance	
		R= 10 ohms connected across a and b terminals.	
		8Ω a	
		2A ξ5Ω	
		• • • • • • • • • • • • • • • • • • •	
		Ω	71

OR

14M

Find the current through 3 ohms resistor using super position theorem

121

80

6.

connected in series opposing configuration, the coils have a total inductance of 150 mH. If the inductance of one coil is 3 times the other find L₁, L₂ and M. What is the coupling coefficient? 7M
