\square
Hall Ticket Number :

Code: 5G234

|| B.Tech. I Semester Supplementary Examinations February 2022

Electromagnetic Fields

(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
UNIT-I1. a) State and explain vector form of Coulombs law?4M
b) Derive the expression for Electric Field intensity and potential at a point P which is situated h meter away from the disc along its axis. The disc is charged uniformly with a charge density of $\rho_{\mathrm{s}} \mathrm{C} / \mathrm{m}^{2}$.
Time: 3 Hours

OR

2. a) The flux density $D=r / 3 a_{r} n C / m^{2}$ in free space. Find
(i) E at $\mathrm{r}=0.2 \mathrm{~m}$
(ii) The total electric flux leaving the sphere af $r=0.3 \mathrm{~m}$
(iii) The total charge within the sphere of $r=0.3 \mathrm{~m}$
b) Six equal charges $\mathrm{Q}=100 \mathrm{nC}$ are located at $\mathrm{x}=5,6,7,8,9$ and 10 meters. Find the potential at the origin.

UNIT-II

3. a) Deduce the boundary conditions for dielectric to dielectric with tangential and normal component?
b) Derive the equation for capacitance of two parallel transmission lines.

OR

4. a) State the properties of Dielectric materials 5M
b) Derive the Ohm's law in point form?

UNIT-III

5. a) Derive and explain the relationship between Magnetic flux, magnetic Field Intensity and Magnetic Flux density.
b) Describe the few applications of Ampere's circuital law? 7M

OR

6. a) State and explain Amperes circuital law. 7M
b) Explain vector magnetic potential and derive its expression.

UNIT-IV

7. Explain the magnetization and demagnetization by using B-H curve with neat diagram.
OR

8. a) Derive Lorentz Force Equation.
b) Calculate the inductance of a solenoid 8 cm in length, 2 cm in radius having relative
permeability of 100 and carrying 800 turns of wire.
9.
9. $\begin{array}{l}\text { UNIT-V }\end{array}$
a) State and explain Faradays laws of electromagnetic induction.
b) A circular loop of 10 cm radius is located in the $x-y$ plane in a field given by
$B=0.5 \cos 377 t\left(3 a_{y}+4 a_{z}\right)$ Tesla. Find the emf induced in the loop.

10. a) State and explain Poynting Theorem and Poynting vector 7M
b) Given a time varying field $E=10 \sin \left(\omega t-\beta_{z}\right) a_{x} V / m$ in free space, find (i) H (ii) Time average power and (iii) total average power crossing the area of $10 \times 10^{-4} \mathrm{a}_{\mathrm{z}}$.

Code: 5G232

R-15

|| B.Tech. I Semester Supplementary Examinations February 2022

Electrical Machines-I

(Electrical and Electronics Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the principle of energy conversion of electromechanical system.
b) Write energy balance equation.

OR
2. a) Explain the construction of a DC machine with neat sketch \& explain the function of each part in detail.
b) Compare the Lap and Wave windings

UNIT-II

3. a) Derive the E.M.F Equation in DC generator.
b) An 8-pole DC Generator has per pole flux of 30 mWb and winding is connected in lap with

600 conductors. Calculate the generated E.M.F on open circuit when it runs at 500 rpm . If armature is wave wound at what speed the machine be drive to generate same E.M.F.

OR

4. a) Explain any two methods of improving the commutation
b) An 8 pole generator has an output of 200 A at 500 V ; the lap connected arm has 1280 conductors, 160 commutator segments. If the brushes are advanced by 4 segments from the no load neutral axis, estimate the armature demagnetizing and cross-magnetizing ampere turns/pole.

UNIT-III

5. a) Explain the voltage build up process in separately excited generator \& also state the causes why self excited generator fails to develop the voltage?
b) Explain the external and internal characteristics of DC shunt generator

OR

6. a) Explain the advantages \& disadvantages with the parallel operation of DC generators.
b) Two D.C shunt generators with E.M.F's of 120 V and 115 V , armature resistance of 0.05 ohms and 0.04 ohms and field resistances of 20 ohms and 25 ohms respectively are in parallel supplying a load of 25 kW . How do they share load?

UNIT-IV

7. a) Explain the working principle of DC motor.
b) A 250V DC shunt motor on no load runs at 1000 r.p.m and takes a current of 5 A . The armature \& field resistances are 0.25 \& 250 respectively. Calculate the speed of a motor when it takes a current of 41 A . the armature reaction weakens the flux by 4%.

OR

8. Explain the various method of speed control used for D.C. shunt motor. Discuss their merits \& demerits

UNIT-V

9. a) Explain the Swinburne's test with neat sketch
b) When running on no-load, a $400-\mathrm{V}$ shunt motor takes a current of 5 A . armature resistance is 0.5 \& filed resistance is 200 . Find the output of a motor \& efficiency when running on full load \& taking a current of 50 A . also find the $\%$ change in speed from no load to full load.
10. a) What is Hopkinson's test? What are the advantages of this method of testing?
b) What are the various methods of finding inertia of motor? Explain any one method.
|| B.Tech. I Semester Supplementary Examinations February 2022

Fluid Mechanics and Hydraulic Machines

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the following properties of the fluid.
i) Specific Weight
ii) Specific Gravity
iii) viscosity
iv) Surface Tension
8M
b) Calculate the Density, Specific weight and Specific gravity of One liter of liquid, which weighs 7N.

6M

OR

2. a) Explain the property viscosity of a fluid. Also describe its variation with temperature.
b) The dynamic viscosity of an oil used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 r.p.m. Calculate the power lost in the bearing for a sleeve length of 90 mm . The thickness of oil film is 1.5 mm .

UNIT-II

3. a) Explain the minor losses in pipes briefly.

7M
b) At a sudden enlargement of water main from 240 mm to 480 mm diameter, the hydraulic gradient rises by 10 mm . Estimate the rate of flow.

OR

4. State the Bernoulli's theorem and derive the Bernoulli's equation completely from the fundamental Euler's equation of fluid motion.

UNIT-III

5. a) Derive an expression for force exerted by the jet on the flat vertical plate moving in the direction of the jet.

8M
b) A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{sec}$ perpendicular to the plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{sec}$. Find i) the force on the plate ii) the work done ii) the efficiency of the jet.
6. a) What is pumped storage power plant and explain its concept. 7M
b) Describe the various storage requirements of hydroelectric power station.

UNIT-IV

7. a) Explain the various parts of Pelton turbine and its working with the neat sketch.
b) A Pelton wheel has a mean bucket speed of $10 \mathrm{~m} / \mathrm{sec}$ with a jet water flowing at the rate of 700 liters per second under a head of 30 meters. The bucket deflects the jet at angle of 160°. Calculate the power given by the water to the runner and the hydraulic efficiency of the turbine. Assume coefficient of velocity as 0.98 .

OR

8. a) Define the unit quantities and describe them with expressions
b) A turbine develops 500 kW power under a head of 100 meters at 200 r.p.m. What would be its normal speed and output under a head of 81 meters

UNIT-V

9. a) Explain the working principle of single acting reciprocating pump with neat sketch.

7M
b) Define indicator diagram and also show that area of indicator diagram is proportional to the work done by the reciprocating pump.

OR

10. a) Define slip, percentage of slip and negative slip of the
reciprocating pump
b) A single acting reciprocating pump running at 50 r.p.m., delivers $0.01 \mathrm{~m}^{3} / \mathrm{sec}$ of water. The diameter of the piston is 200 mm and stroke length 400 mm . Determine:
i) The theoretical discharge of pump ii) coefficient of discharge iii) slip and percentage of slip of the pump.

Code: 5G233

|| B.Tech. I Semester Supplementary Examinations February 2022

Electrical Circuits-I

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Define the following terms

Tree (ii) Branch (iii) Link (iv) Loop (v) Graph(vi) Cut set and (vii) Tie set

```
OR
```

2. Draw Graph Tree and find the basic cutest matrix for the given electrical network below.

UNIT-II

3. a) With neat diagrams explain different types of alternative signals and also explain about phase difference.
b) Explain the significance of operator j in ac circuits

OR

4. a) Give the detailed comparison of series and parallel resonant circuits.
b) Two impedances $Z_{1}=(8+j 6)$ ohms and $Z_{2}=\left(4-j X_{c}\right)$ ohms are connected in parallel. Find the value of X_{c} such that the circuit resonates.

UNIT-III

5. a) State and explain Nortons theorem.
b) Verify Nortons theorem for the given circuit to find the current through load resistance $R=10$ ohms connected across a and b terminals.

6. Find the current through 3 ohms resistor using super position theorem

UNIT-IV

7. a) Obtain the relation between Hybrid and ABCD parameters.
b) Determine Y parameters for the given network

OR
8. a) Determine ABCD parameters for the given network.

UNIT-V

9. a) Derive the expression for mutual inductance in terms of flux and current.
b) Define (i) Flux (ii) m.m.f (iii) Reluctance (iv) Magnetic field intensity.

OR

10. a) Develop an expression for equivalent inductance of two coupled coils of self-inductances L_{1} and L_{2} connected in series aiding and opposing with mutual inductance M.
b) Two coils connected in series aiding fashion have a total inductance of 250 mH . When connected in series opposing configuration, the coils have a total inductance of 150 mH . If the inductance of one coil is 3 times the other find L_{1}, L_{2} and M. What is the coupling coefficient?
