Hall Tic	ket Number :								
Code: :	5G233				<u> </u>			R-15	
	ll B.Tech. I Sen					inatio	ons May	2017	
		ا ط Electrica)		I Circui	-	orinal			
	1arks: 70 all five units by c				•	0,		Time: 3 Hours = 70 Marks)	
			UNI	Г—I					
1. a)	Derive the relation	ns betwee	n star and	d delta tra	nsforr	nation.			8M
b)	Determine the end series and paralle	•	capacitan	ice when	numt	per of	capacitor	s connected in	6M
				OR					
2. a)	Explain voltage d							amples	6M
b)	Find the current t	hrough 4	by using	both Mes	sh and	Noda	l analysis.		
		10V (Ŧ)	50 XWW		-	21	<u>م</u>		8M
			UNIT	 11					
3. a)	Find the Average, I	RMS values	and Peal	k factor, Fo	orm Fa	ctor for	the wavefor	orm shown.	
		20 A	T 31 8 8	TIR		7	→t		8M
b)	Define								
	i. Reactance ii. Impedance			usceptand dmittance OR			v. Reactiv vi. Power	•	6M
4. a)	Derive an exprese between Q-factor			of series	RLC	circuit	. Also wr	ite the relation	7M
b)	•	with a va 60v supply	riable cap / having	bacitor is a frequen	conne cy of	cted ir 1Mhz.	n series w calculate	ith a resistor of i)value of C to	

7M

6M

8M

UNIT–III

5. a) Find the voltage across 2 resistor using superposition theorem in the circuit shown.

b) Determine the value of resistance R in the network shown for maximum power transfer to it and the maximum power.

6. a) Calculate the current flowing through Z_L by applying Millman's theorem in the network.

b) Determine the current through Z_{L} in the circuit shown using Thevenin's theorem.

7. a) In the arrangement of figure shown below, find the ABCD parameters of N₀.

b) Determine Y parameters of the network shown

8. a) Determine h parameters of the network shown

b) Determine the Z parameters for the network shown.

- 9. a) A circular iron ring has a mean circumference of 1.5m and a cross-sectional area of 0.01m². A saw- cut of 4mm wide is made in the ring. Calculate the magnetizing current required to produce a flux of 0.8mWb in the air gap if the ring is wound with a coil of 175 turns. Assume relative permeability of iron has 400 and leakage factor of 1.25.
 - b) Find the voltage across the 10 resistor for the network shown.

10. a) Draw the graph of the network shown and select a suitable tree and obtain the cutset matrix. Also write KCL equations from the matrix.

b) Determine the dual of the network shown.

8M

6M

8M

8M

	Hall	Ticket Number :											
С	ode	: 5G232		[<u> </u>			I	I	II		R-15	
-		II B.Tech. I S	Semes							atior	ns Mo	ay 2017	
			(_)	-	ctrical	-	-						
		ıx. Marks: 70	(Elec	ctrical	and Ele	ctror	nics I	ngii	neer	ing)		Time: 3 Hours	
	1010	Answer all five un	its by c	hoosin	U 1	Jestio		m eo	ach	unit (5 x 14		
						UNI	T—I						
1.	a)	Draw and explain e	energy l	balance	e equatior	n in do	c mad	hine	s.				6M
	b)	A 4–pole, lap woul field resistance of 2 If the load resistan	200 .T	he arm	ature has	; 720 d	cond	uctor	s anc				8M
						OR							
2.	a)	What is a commuta	ator? Di	scuss i	ts need ir	n DC r	nach	ines.					6M
	b)	Define the terms: F	Front pit	ch, bad	ck pitch, s	hort p	oitchir	ng.					4M
	c)	Differentiate betwe	en prog	gressive	e winding	and r	etrog	ressi	ve w	inding	J.		4M
						UNIT	[]]						
3.	a)	From fundamental	s, derive	e the ex	pression	for E	MF ir	nduce	ed in	DC m	achin	es.	7M
	b)	An 8-pole DC gene conductors. Calcu armature is wave	late the	gener	ated emf	on o	pen (circui	t whe	en it i	runs a	at 400 rpm. If the	714
		voltage.				OR							7M
4.	a)	Derive the express	sions for	. dema	netizina	-	rnee	maar	natizi	na an	noro	turns per pole	10M
ч.	b)	What are different						-		-	-	turns per pole.	-
	0)	what are unreferit	103363 1			UNIT				vbiairi	•		4M
5	a)	Draw and explain t	the inter	nal and	1 external			istics	of D	Caen	erato	rs	7M
0.	b)	Define and briefly								Ũ			7M
	0)	Define and brieny	cxpiairi	ontioar		OR		ontio	a op		n u D	generator.	7 111
6.	a)	Discuss the need f	for paral	llel ope	ration of I	-	nera	tors.					5M
•	b)	Draw and explain	-	•		•			shun	t aen	erator	. Also explain the	0101
	2)	voltage build up pr	•						onan	gon	orator		9M
						UNIT	-IV						
7.	a)	What is the need for	or starte	er? With	n a neat d	liagrai	m, ex	plain	the	opera	tion o	f a 3-point starter.	8M
	b)	Discuss the speed its rated speed.	l control	schem	ie normal	ly use	d to	contr	ol the	e spee	ed of a	a DC motor below	6M
						OR							
8.	a)	What is back-EMF	? Expla	in its si	gnificance	e.							4M
	b)	Draw and discuss	the cha	racteris	tics of DC	C shur		otors.	Also	ment	ion th	eir applications.	10M
9.	a)	Explain the Hopkir	nson's te	est for o	determina	tion o	f effic	cienc	y of s	shunt	mach	ines.	7M
	b)	A Field's test on connected in serie Motor: Armature c	s) gave	the foll	owing tes	st data	ì .					-	
		Generator: Armat 36V. Resistance o this load.	ure curr	rent: 38	3 A; Arma	ature	/olta	ge: 4	00 V	; Field	d wind	ling voltage drop:	7M
						OR							
10.	a)	Explain the Swinbu		est to de	etermine		load	l loss	es of	a DC	macl	nine. What are the	7M
	b)	A retardation test speed fell from 15 occurred in 26 sec speed drop occurre 1500 rpm and the	530 to 1 onds; w ed in 20	470 in ith an a secon	43 seco average lo ds. Deter	nd; w bad of mine t	ith fie 1.2 k the m	eld n www.su	orma upplie nt of	illy, th ed by inertia	ie sar the ai	me drop in speed mature, the same	7M

Hall	Ticke	et Number :	_
Code:	562	R-15	
Couc.		B.Tech. I Semester Supplementary Examinations May 2017	
		Electromagnetic Fields	
Max	Mar	(Electrical and Electronics Engineering) ks: 70 Time: 3 Hours	
		er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.	a)	Derive an expression for the electric field intensity and potential at a point p which is situated 'h'[meter away from the disc along its axis. The disc is charged uniformly with a charge density of $_{\rm s}$ c/m ² ?	10M
	b)	Three identical point charges of $4\mu c$ each are located at the corners of an equilateral triangle, 0.5mm on a side in free space. How much work will be done to move one charge to a point midway between the other two?	4M
		OR	
2.	a)	Explain the applications of Gauss's law to symmetrical charge distributions	10M
	b)	A non uniform surface charge density $s = \frac{5\rho^2}{\rho^2+1} n^{\rho/n} r^2$ lies in the plane	
		z = 2 where 5 and $s > 5$. How much electric flux leaves the circular region 5, $z = 2$?	4M
		UNIT–II	
3.	a)	What is dipole? Derive the expression for electric field intensity due to a dipole?	7M
	b)	A dipole of moment ve the expression cated at origin in free space $\vec{P} = 6\vec{az} \cdot nC/m$ is low i) Find V at P (r=4, $= 2\bar{Q}\bar{Q}, \pm =0^{\circ}$) ?	7M
		OR	7 101
4.	a)	State and explain the boundary conditions at surface of perfect conductor?	10M
	b)	State the properties of dielectric materials?	4M
	0)		
5.	a)	Explain the scalar magnetic potential and derive its expression?	7M
0.	∽, b)	Derive an expression for magnetic field intensity of any point on the axis of	
	0)	circular coil carrying current?	7M
		OR	
6.	a)	Using Ampere's Circuital law, find the magnetic field intensity in the case of a closely wound torroidal coil?	7M
	b)	A conductor is bent in the form of a regular polygon of 'n' sides inscribed in a circle of radius 'r'. Show that the expression for magnetic flux density $\frac{\text{bed in } a}{\overline{B} \text{ at the}}$ centre for a current of I amp is $\overline{B} = \frac{t^{0NI}}{2\pi r} \tan \frac{\pi}{n}$?	-71 4
		$2\pi r$ n	7M

Page **1** of **2**

Page **2** of **2**

7.	a)	Derive an expression for the force between two parallel conductors?	7M
	b)	A negative charge Q = -40nC is moving with a velocity of 6 \times 10 ⁶ m/s in a direction specified by the unit vector $a_y = -0.48a_x - 0.6a_y + 0.64a_z$. Find the magnitude of vector force excreted on the moving particle by the field a) $\overline{B} = 2a_x - 3a_y + 5a_z$ mT b) $\overline{E} = 2a_x - 3a_y + 5a_z$ Kv/m?	7M
		OR	
8.	a)	Derive expression for inductance of a Toroid?	7M
	b)	Two mutually coupled coils are connected in series. $L1 = 0.5 H$, $L2 = 0.6 H$, $m = 0.1 H$. A DC current of 2 amps is passed through this system in such a way that the current increase at a uniform rate of 1 amp per sec. What is the voltage developed across the end points if,	
		i. The coils are connected in magnetically adding conditions.	
		ii. The coils are connected in a magnetically opposing condition.	7M
		UNIT–V	
9.	a)	State and explain Faraday's laws of electromagnetic induction?	7M
	b)	A circular cross section conductor of radius 3 mm carries a current $l_c = 5 \sin (6 \times 10^8) \mu$ A what is the amplitude of the displacement current density if = 40 ms/m	714
		and r=1?	7M
		OR	
10.	a)	State and prove Poynting theorem?	7M
	1. \	Martin Manager III and the second term in a Califaction state and intermediate of	

b) Write Maxwell's equations for time varying fields in point and integral form? 7M

ode	5G5	539 R-15	
		B.Tech. I Semester Supplementary Examinations May 2017	
		Fluid Mechanics and Hydraulic Machines	
		(Electrical & Electronics Engineering)	
		ks: 70 five units by choosing one question from each unit (5 x 14 = 70 Marks)	
12000	i uii		
		UNIT–I	
1.	a)	What is vapour pressure? What is its significance in flow problems?	4
	b)	State and prove Pascal's law and give some examples where this principle is applied.	10
		OR	
2.	a)	What is a manometer? How are manometers classified?	4
	b)	Define the equation of continuity. Obtain an expression for the continuity equation for	
		a two dimensional flow.	10
-		UNIT-II	
3.	a)	State the limitations of the Bernoulli's theorem.	4
	b)	What is impulse momentum theorem? Derive the same.	10
		OR	
4.	a)	How can you differentiate the pipes in parallel & series?	4
	b)	Derive the expression for loss of head due to friction in a given pipe.	10
-	-)	UNIT-III	4
5.	a) Þ	Define impact of jet and derive an expression for the force of a jet on a fixed plate.	4
	b)	What is hydroelectric power plant? What are the factors consider for constructing power plant. Explain in detail classification of power plants.	10
		OR	10
6.	a)	Draw the lay of Hydroelectric power plant. Explain the functions of each complement.	4
0.	с) b)	Three turbo-generators each of capacity 10,000kW have been installed at a hydel	
	0)	power station. During a certain period of load, the load on the plant varies from	
		12,000kW to 26,000kW. Calculate (i) total installed capacity (ii) load factor (iii) Plant	
		factor (iv) utilization factor.	10
7	-)	UNIT-IV	4
7.	a) Þ	What is the significance of specific speed?	4
	b)	A turbine develops 5000kW when running at 80rpm. The head on the turbine is 20m. If the head on the turbine is increased to 30m, determine the speed and power	
		developed by the turbine.	10
		OR	
8.	a)	Differentiate between an impulse turbine and a reaction turbine.	4
	b)	A Kaplanar turbine runner is to be designed to develop 900kW. The net available head	
		is 5.5m. Assume a speed ratio 2, flow ratio 0.65 and total efficiency 85%. The	
		diameter of the boss is 1/3 diameter of the runner. Find the diameter of the runner its speed, and the specific speed on the turbine.	10
9.	a)	Explain the working principles of a centrifugal pump and its applications.	4
	b)	Derive an expression for the starting speed of the centrifugal pump.	10
	,	OR	
10.	a)	How will you classify the reciprocating pumps?	4
	b)	A single acting reciprocating pump having a bore of 150mm and a stroke of 300mm	
	,	length, discharges 250L of water per meter at 50rpm. Neglecting losses, find	
		theoretical discharge, coefficient of discharge and slip of the pump.	10

Hall	Ticke	t Number :							г		
Code	: 5G	232						I		R -1	15
	11 1	3.Tech. I Seme	Mather	•	al Me	thods	s-111	ions I	May 2	017	
Max. Answe		ks: 70 five units by cho	·					nit (5		me: 3 70 Mc	
					UNIT-						
1.	,	Prove that if A an P and Q such th	at B=PAC	2.					Ū		
	b)	Find the values o				•		-		•	
		3x + 4y + 3z = 14; (iii) infinite number	•		has (I	i) uniqi	le solu	tion, (I	i) no so	olution a	and
				0115.	OR						
2.	a)	Define Rank of a	Matrix. Re	educe tl		rix $\begin{bmatrix} 3\\4\\7 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	to the	e norma	al form	
		and hence find its	s rank.								
	b)	Prove that the ch	aracteristi	c roots			n matrix	k are r	eal.		
2		Find the order of	oonvorgor	non of N	UNIT-			thad			
3.	a) b)	Find the order of $dy = y - r$	•			•					
	5)	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ Euler's method.	with initia	I condit	ion y=	=1 at <i>x</i>	c = 0. F	ind y	for $x =$	0.1 by	
					OR						
4.	a)	Use Milne's meth	od to find	y(0.3)	from :	$y' = x^2$	$+y^{2}, y$	(0) = 1	. Find	the initi	al
		values $y(-0.1)$, y	v(0.1), y(0.2) fro	m the T	aylor's	s series	meth	od.		
	b)	Find a real root o		,						d corre	
	,	to four decimal pl			810 11		. to going				
					UNIT-	111					
5.	a)	Find the missing	term in the	e table							
		x 2		3		4	ę	5	6		
	b)	y45Velocity V of a part		49.2		4.1		- lincor	67 Dath is		N /
	D)	the following table distance of 20 me	e. Estimat			•				•	'y
		S(m)	0 2.5	5.0	7.5	10.0	12.5	15	17.5	20	
		V(m/sec)	16 19	21	22	20	17	3	11	9	
6.	a)	From the followin	g table, fir	nd $e^{1.02}$,	OR using N	Vewtor	n's forw	ard fo	rmula		
		x 1.00	1.05	1.10		.15	1.20	1.2		1.30	
		<i>e^x</i> 2.7183	3 2.8577	3.004	2 3.1	582	3.3201	3.49	903 3.	6693	
	b)	Find $f'(7.5)$ from	n the follow	wing tat	ole:	I			I		
		<i>x</i> 7.47	7.48	7.49	7.50) 7.	.51	7.52	7.53	1	
		(())		0 100						-	

7.48	7.49	7.50	7.51	7.52	7.53	
0.195	0.198	0.201	0.203	0.206	0.208	7M

f(x)

0.193

Page **1** of **2**

7M

7M

7M

7M

7M

UNIT-IV

7. a) Fit a second degree parabola to the following data

х	1989	1990	1991	1992	1993	1994	1995	1996	1997	
у	352	356	357	358	360	361	361	360	359	7M
			•		•	•	•	•		

b) Solve the partial differential equations $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given $u = 3e^{-y} - e^{-5y}$

when x = 0.

OR

- 8. a) Solve by Charpit's method $z = p^2 x + q^2 y$.
 - b) An experiment data of the relation $V = at^{b}$ is given by

V (ft/min)	350	400	500	600
<i>t</i> (min)	61	26	7	2.7
		<i>·</i> · · ·		

Find the best possible values of a and b.

UNIT-V

- 9. a) Expand $f(x) = \sqrt{1 \cos x}$, 0 < x < 2f in a Fourier series. Hence evaluate $\frac{1}{13} + \frac{1}{35} + \frac{1}{57} + \cdots$
 - b) If $f, tf, t^2 f, \dots, t^n f$ are absolutely integrable and F() is Fourier transform of *f*, then prove that $\frac{d^n}{d\tilde{S}^n}(F(\check{S})) = (-i)^n F\{t^n f(t)\}, n = 1, 2, \dots$ 7M

of
$$f(x) = 2x - x$$

10. a) Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0, 3) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{f}{12}$

b) Show that the inverse finite Fourier sine transform of

$$F_{s}(x) = \frac{1}{f} \left\{ 1 + \cos nf - 2\cos \frac{nf}{2} \right\} \text{ is } f(x) = \begin{cases} 1, & 0 < x < f / 2 \\ -1, & f / 2 < x < f \end{cases}$$

Hall	Tick	et Number :	
Code	e: 50	G231 R-15	
	h	B.Tech. I Semester Supplementary Examinations May 2017 Switching Theory and Logic Design (Electrical and Electronics Engineering)	
-		Time: 3 Hou If five units by choosing one question from each unit (5 x 14 = 70 Marks ********	
		UNIT–I	
1.	a)	Solve the Following	
		i) $(446.25)_{10} = (\)_{16}$ ii) $(1010111.001)_2 = (\)_8$ iii) $(11C.DC)_{16} = (\)_2$	6M
	b)	i) Perform 1's and 2's complementary subtraction on $(11010 - 10011)_2$	
		ii) Generate the hamming code for 1011	8M
2.	a)	 OR i) State and prove Demorgan's theorem for three variables 	
۷.	u)	ii) What are Universal gates? Realize AND and OR gates using NAND gates.	7M
	b)	i. What are error correcting and error detecting codes? Explain how	
		hamming code can be use to detect and correct 4 bit data.	
		ii. Realize XOR gate using minimum member of NAND gates.	7M
3.	a)	i. Expand Y = A + B ¹ C in SSOP form	
	,	ii. Simplify the given expression using K Map.	
		F= m (1, 2, 3, 5, 9, 12, 14, 15) + d (4, 8, 11) Implement the simplified	
	F)	expression using NOR gates only.	7M
	b)	i. Show that $A + BC = (A + B) (A + C)$ ii. Demonstrate by means of truth table the validity of	
		I. Identity Law	
		II. Distribute Law	7M
4.	a)	OR i. Prove that AND – OR Network is equal to NAND – NAND gate.	
	u)	ii. Simplify the following Boolean expressions	
		I. $ABC^1+A^1BC+ABC+A^1BC^1$	7M
	b)	II. $(yz^1 + x^1w)(xy^1 + zw^1)$ Simplify F = m (0, 1, 4, 5, 6, 9, 11, 12, 13, 14, 15) + d (7, 8) using tabular	7 171
	~)	method and implement using NOR gates only	7M
-	-)		
5.	a)	 Design a 3 bit Binary to Gray code converter Implement the Boolean expression using 16x1 Multiplexer. 	
		F= m (0, 1, 2, 3, 4, 5, 6, 7, 9)	8M
	b)	Implement the following expressions using PLA $(1, 2, 4, 6, 7)$	6M
		$F_1 = m(1, 2, 4, 6, 7), F_2 = m(0, 1, 2, 4, 6),$ OR	OW
6	a)	i) Explain a 4 bit parallel adder with an example.	
	L. \	ii) Implement 4-16 decoder using 3-8 decoder	7M
	b)	i) Implement full adder using NAND gatesii) What is magnitude comparator? Explain with circuit diagram a 1 bit	
		magnitude comparator	7M

UNIT–IV

8M
8M
6M
7M
7M

UNIT-V

- 9 a) i) What are the limitations of FSM
 - ii) Define the state equivalence and machine equivalence with reference to sequential machines. Reduce the state table below.

PS	NS/Z	
	X=0	X=1
Α	F 0	B 0
В	D 0	C 0
С	F 0	E 0
D	G 1	A 0
Е	D 0	C 0
F	F 1	B 1
G	G 0	G 0
Н	G 1	A 0

8M

6M

7M

- b) i) State Melay and Moore machines. Give their comparisons
 - ii) Discuss the various blocks of ASM chart.

OR

- 10 a) Draw the ASM chart and state diagram for the following state transitions, start from the initial state T_1 , then if XY=00 go to T_2 , if XY=01 go to T_3 , if XY=10 go to T_1 , otherwise go to T_3
 - b) Minimize the following state table using partition method.

Present	Next state, Output	
state	X = 0	X = 1
а	b, 0	d, 1
b	g, 0	a, 0
С	d, 0	b, 1
d	g, 0	a, 0
е	d, 0	a, 1
f	e, 1	f, 1
g	d, 1	d, 1