<u> </u>	pde: 5G539	
		-
	II B.Tech. I Semester Supplementary Examinations May/June 2022	
	Fluid Mechanics and Hydraulic Machines	
N/	(Electrical and Electronics Engineering) ax. Marks: 70 Time: 3 Hours	
	nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	

		Marl
2)	UNIT-I	
. a)	 Define the following. i) Absolute pressure ii) Gauge pressure iii) Vacuum pressure 	6
ы)		0
b)	The right limb of a simple U-tube manometer containing mercury is open to atmosphere while the left limb is connected to a pipe in which a fluid of sp.gr.0.9 is flowing. The center of	
	the pipe is 12 cm below the level of mercury in the right limb. Find the pressure of a fluid in	
	the pipe if the difference of mercury level in the two limbs is 20 cm.	8
	OR	
	Water flows through a pipe AB 1.2 m diameter at 3m/sec and then passes through a pipe	
	BC 1.5 m diameter. At C the pipe branches. Branch CD is 0.8 m in diameter and carries one	
	third of flow in AB. The flow velocity in branch CE is 2.5 m/sec. Find the volume rate of flow	
	in AB, the velocity in BC, the velocity in CD and the diameter of CE.	14
	UNIT–II	
	Derive an expression for rate of flow through venturimeter.	14
	OR	
•	A 45 [°] reducing bend is connected in a pipe line, the diameters at inlet and outlet of the bend	
	being 600 mm and 300 mm respectively. Find the force exerted by the on the bend if the intensity of pressure at inlet to the bend is 8.829 N/cm ² and the rate of flow of water is 600	
	litres per second.	14
	UNIT-III	
	What are the various types of hydroelectric power stations and explain briefly about them.	14
	OR	• •
	Derive an expression for force exerted by a jet on a stationary curved plate when i) when the	
	jet strikes the curved plate at the center ii) jet strikes the unsymmetrical curved plate at one	
	end tangentially.	14
	UNIT-IV	
	Explain the characteristic curves of the hydraulic turbines	14
	OR	
. a)	Define specific speed of the turbine and derive an expression for it.	7
b)	A turbine is to operate under a head of 25 m at 200 r.p.m. The discharge is 9 cumec. If the	
	efficiency is 90%, determine: i) specific speed of the machine ii) power generated iii) type of	
	turbine.	7
	UNIT-V	
	Explain about the various losses in the centrifugal pumps.	14
	OR	
).	The internal and external diameters of the impeller of a centrifugal pump are 200 mm and	
	400 mm respectively. The pump is running at 1200 r.p.m. The vane angle of the impeller at	
	inlet and outlet are 20 [°] and 30 [°] respectively. The water enters the impeller radially and	

water.

velocity of flow is constant. Determine the work done by the impeller per unit weight of the

14M

	Co	de: 5G234	
		II B.Tech. I Semester Supplementary Examinations May / June 2022	
		Electro Magnetic Fields	
	NA	(Electrical and Electronics Engineering) ax. Marks: 70 Time: 3 Hours	
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		*****	Marks
		UNIT–I	
1.	a)	State and explain vector form of Coulombs law?	4M
	b)	Derive the expression for Electric Field intensity and potential at a point P which is situated h meter away from the disc along its axis. The disc is charged uniformly with a	
		charge density of ${}_{s}$ C/m ² .	10M
		OR	
2.		Given D= $(2y^2+z)a_x+4xya_y+xa_z$ C/m ² find	14M
		UNIT–II	
3.		State and explain the continuity equation of current in integral form and point form.	14M
4	c)	OR Deduce the boundary conditions for disloctric to disloctric with tendential and normal	
4.	a)	Deduce the boundary conditions for dielectric to dielectric with tangential and normal component?	7M
	b)	Derive the equation for capacitance of two parallel transmission lines.	7M
		UNIT-III	
5.	a)	Derive and explain the relationship between Magnetic flux, magnetic Field Intensity and	
	b)	Magnetic Flux density. Describe the few applications of Ampere's circuital law?	7M 7M
	D)	OR	7 111
6.		A current element I I=2 $(0.6a_x-0.8a_y)$ micro amperes is situated at a point (4,-2,3). Find	
		the incremental field H at a point (1,3,2).	14M
		UNIT-IV	
7.	a) Þ)	Derive the expression for energy stored in a magnetic field.	7M
	b)	Derive the self-inductance of a solenoid OR	7M
8.		Derive the expression for force between two long parallel current carrying conductors	
-		placed in a magnetic field.	14M
		UNIT–V	
9.	a)	Distinguish clearly the dynamically induced EMF and statically induced EMF explain with neat diagram.	
			7M
	b)	Find the EMF developed around a circular path with radius r=0.5m in the plane z=0 at t=0 if(i) B=0.1 sin(377t)a _z (ii) B=0.1sin(377t/r)a _r .	7M
		OR	7 101
0.		Find the displacement current density if the magnetic field intensity in free space is given	
		as H=H _o sin a_y A/m, where = t- βz and β is a constant quantity. Determine the	
		displacement current density.	14M