	На	Il Ticket Number :	7
L	Cod	de: 5G232	
		II B.Tech. I Semester Supplementary Examinations October 2020	
		Electrical Machines-I	
	110	(Electrical and Electronics Engineering) ax. Marks: 70 Time: 3 Hours	
	IVIC	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
1.		Elucidate the principle of operation and constructional details of a machine, which generates unidirectional voltage with the neat sketch?	14N
n n	2)	OR	
2.	a)	Explain why equalizer connections are used in lap windings and dummy coils are sometimes used in wave winding?	71
	b)	Elucidate the principle of energy conversion of electromechanical system?	71
_	,	UNIT-II	_
3.	a)	Derive the expressions for demagnetizing and cross magnetizing ampere turns per pole.	81
	b)	What are different losses that occur in DC machines? Briefly explain.	61
	、	OR	
4.	a)	Distinguish the methods to avoid sparking at the brushes in a DC machine?	71
	b)	A 4-pole motor has a wave connected armature with 888 conductors. The brushes are displaced backward through 5 mechanical degrees from the geometric neutral plane. If the total armature current is 90A. Calculate the cross and demagnetized ampere turns per pole.	71
5.		What is the experimental procedure to obtain the load characteristics of dc shunt generator? Explain.	141
		OR	
6.	a)	State four reasons for operating dc generators in parallel?	61
	b)	Two D.C shunt generators with E.M.F's of 120 V and 115 V, armature resistance of 0.05ohms and 0.04 ohms and field resistances of 20 ohms and 25 ohms respectively are in	
		parallel supplying a load of 25 kW. How do they share load.	8
7.	2)	UNIT-IV Evaluin the significance of back omf in a DC mater	7
	a) b)	Explain the significance of back emf in a DC motor. Explain the working principle of a starter suitable for high speed control of a dc shunt motor	71
	b)	with neat sketch.	71
		OR	
3.	a)	From fundamentals derive the torque equation of a DC motor	71
	b)	Identify the DC motor with the highest starting torque. Assess the reason with relevant	
		equation?	71
		UNIT–V	
Э.	a)	Explain the fields test to determine the efficiency of a dc series machine.	71
	b)	Describe the Swinburne's test to determine the no-load losses of a dc machine. OR	71
).	a)	Explain the procedure to find the stray losses of dc shunt machine.	7
	b)	List the advantages of Indirect test over Direct test.	7

	Hall	Ticket Number :												
L	Cod	e: 5G234											R-15	
	cou	II B.Tech. I Se	meste	er Sup	pler	men	tary	Exc	min	atio	ns C	Dctob	oer 2020	
				Elec		-	-							
	Ma	x. Marks: 70	(Elect	trical (and	Elec	tron	ics E	ngin	eerii	ng)		Time: 3 Hou	rs
		Answer all five unit	ts by ch	noosing	g on			n fro	m ec	ach u	nit (5 x 14		5
						****	*****							
1.	a)	State and explain of	coulomb	os law				en two	o cha	rges	?			7M
	b)	The concentrated	charges	s of 0.2	2µC a	are lo	cated	d at t	he ve	ertices	s of a	an equ	ilateral triangle	
		of 10m of side. Fin	id the m	agnitu	de ar	nd dir	ectio	n of t	he fo	rce o	n on	e char	ge due to other	714
		two charges?				0	R							7M
2.	a)	State and explain (Gauss la	aw in li	ntegr	al for	m.							7M
	b)	Derive the equatio	on for po	otential	at a	poin	t insi	de a	solid	sphe	ere h	aving	uniform charge	714
		density?				JNIT-	_11							7M
3.	a)	Define Dipole and	Dipole ı	momer				expre	ssion	for p	oten	tial du	e to dipole?	7M
	b)	Explain Polarizatio	n of die	lectric	mate	rials?)							7M
						0								
4.	a)	Deduce the bound component?	dary co	ndition	s for	diele	ectric	to d	ielect	ric w	ith ta	angent	ial and normal	7M
	b)	Derive the equation	n for ca	pacitar	nce o	f two	para	llel tra	ansm	issio	n line	es.		7M
	~)					JNIT-	-							
5.	a)	Obtain an express	ion for N	Magnet	ic fie	ld int	ensity	y due	to a	n infir	nitely	long	current carrying	
	b)	conductor?	sion for '	Voctor	Mag	notio	Doto	ntial						7M 7M
	b)	Derive the express		vector	mag	0 10		nual.						7M
6.		Using Ampere's c	ircuital	law fin	dHo			infini	te sh	eet o	f cur	rent.		14M
		0				JNIT-								
7.	a)	What is a magnetic	•								•			7M
	b)	Derive the express	sion for i	inducta	ince	of a s O		oid us	sing /	Ampe	res o	circuita	l law.	7M
8.		Explain the magne	tization	and de	emac			by u	sina	B-H c	urve	with r	eat diagram	14M
0.					, in a g	,	anon		onig	2	, air t c		loat alagrann	1-1111
					ι	JNIT-	-V							
9.	a)	Distinguish clearly	the dyn	amical	ly inc	ducec	EMI	= and	l stati	cally	indu	ced El	IF explain with	
	b)	neat diagram. Find the EMF dev	alanad	around		ircula	r nat	h wit	h rad	liuc r-	-0 5r	n in th	o plano z=0 at	7M
	b)	t=0 if(i) B=0.1 sin(3	•				•	II WIU	ii iau	105 1-	-0.51		le platte 2–0 at	7M
						0								
10.	a)	Derive the express	sion of a	one of t	he M	axwe	ell's e	quati	on C	url(E)	$=\frac{-\hat{c}}{\hat{a}}$	$\frac{\partial B}{\partial B}$.		71.4
	b)	Derive the equation									U	ı	ds.	7M 7M
	~,				-1-		**				J			

	На	Ticket Number :	_
L	Cor	e: 5G539	
		II B.Tech. I Semester Supplementary Examinations October 2020 Fluid Mechanics and Hydraulic Machines (Electrical and Electronics Engineering)	
	Mc	x. Marks: 70 Time: 3 Hours Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	i
	a)	State and explain the Newton's law of viscosity.	
	b)	Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter, when immersed in (i) water and (ii) mercury. The temperature of the liquid is 20° C and the values of surface tension of water and mercury at 20° C in contact with air are 0.0735 N/m and 051N/m respectively. The contact angle for water is 0° and for mercury is 130° . Take specific weight of glass tube at 20° as equal to 9790 N/m ³ .	
		OR	
	a)	Differentiate between (i) stream line and streak line (ii) Laminar flow and Turbulent flow	
	b)	Explain the practical applications of following concepts in daily life	
		(i) Vapour pressure (ii) surface tension (iii) vacuum pressure UNIT–II	
	a)	Explain Hydraulic Gradient Line and Total Energy Line	
	b)	A pipe of 0.6m diameter is1.5km long. In order to augment the discharge, another pipe of the same dia is introduced parallel to the first in the second-half of the length. Neglecting minor losses, find increase in discharge if friction factor is 0.04. Assume a level difference of 30m at inlet & outlet of the pipe.	
		OR	
	a)	State the assumptions made in the derivation of Bernoulli's equation. State the momentum equation and explain its significance.	
	b)	A 300 mm diameter pipe carries water under a head of 20 meters with a velocity of 3.5 m/s . If the axis of the pipe turns through 45° , find the magnitude and direction of the resultant force at the bend.	
		UNIT-III	
	a)	Derive an expression for the force exerted by a jet of water on a inclined fixed flat plate to the jet	
	b)	A jet of water of 60 mm diameter strikes a curved vane at its centre with a velocity of 15 m/s. The curved vane is moving with a velocity of 6 m/s in the direction of the jet. The jet is deflected through an angle of 165 ⁰ . Assuming the plate to be smooth, find (i) thrust on the plate in the direction of jet (ii) power of the jet and (iii) Efficiency of the jet. OR	
	a)	What are the principal components of a hydro-electric scheme? Discuss their functions and	
	b)	design specifications Define and differentiate between the following in connection with hydropower (i) firm and	
	~)	secondary power (ii) Load factor, utilisation factor and plant factor (iii) installed and dependable capacity of a power house	

Page **2** of **2**

		UNIT-IV	
7.	a)	Explain the Cavitations in Turbines.	4M
	b)	A reaction turbine is 2m above the tail water level and works under a head of 25 m. The draft tube records a vacuum gauge reading of 5.3 m of water and its inlet diameter is 2.2 m. The efficiency of the draft tube is 80%. What is the power developed by the turbine with an efficiency of 90%.	10M
		OR	
8.	a)	Explain the different types of the Efficiencies of a turbine.	4M
	b)	A Kaplan turbine working under a head of 25 m develops 16000 kW shaft power. The outer diameter of the runner is 4 m and hub diameter is 2 m. The guide blade angle is 35. The hydraulic and overall efficiency are 90% and 85% respectively. If the velocity of whirl is zero	
		at outlet, determine: runner vane angles at inlet and outlet, and speed of turbine.	10M
9.	a)	What is priming? Why is it necessary?	4M
	b)	A centrifugal pump is to discharge 0.118 m ³ /sat speed of 1200 rpm against a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric efficiency is 75 percent. Determine the vane angle at the outer periphery of the impeller.	10M
		OR	
10.	a)	Why is slip of a reciprocating pump? Why does it occur? Under what circumstances is the slip negative?	7M
	b)	Explain working principle of reciprocating pump with neat sketch	7M

Hall Ticket Number :						[
						R-15

Code: 5GC32

II B.Tech. I Semester Supplementary Examinations October 2020

Mathematical Methods-III

(Common to EEE & ECE)

Max. Marks: 70

1.

a)

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

		UN	IIT–	l
Determine the rank of the matrix	0	1	3	1]
Determine the real of the metric	1	0	1	1
Determine the rank of the matrix	3	1	0	2
	1	1	2	0

b) Find whether the following system of equations are consistent. If so, solve them x + 2y + 2z = 2; 3x - 2y - z = 5; 2x - 5y + 3z = -4; x + 4y + 6z = 0

OR

- 2. a) Solve the equations 3x + y + 2z = 3, 2x -3y z = 3, x + 2y + z = 4 using Guass elimination method
 - b) Prove that the Eigen values of a triangular matrix are just the diagonal elements of the matrix.

UNIT–II

- 3. a) Evaluate $\sqrt[3]{24}$ by Newton Raphson method
 - b) Employ Taylor's method to obtain appropriate value of y at x = 0.2 for the differential equation $\frac{dx}{dy} = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with the exact solution.

OR

- 4. a) Find a real root of $x^3 x^2 1 = 0$ by Bisection method
 - b) Using Euler's method find an approximate value of y corresponding to x = 1, given $\frac{dx}{dy} = x + y$ and y = 1 when x = 0

UNIT-III

5. a) Find the missing term in the table

Х	0	1	2	3	4
f(x)	1	3	9	-	81

b) Find first and second derivatives of y at x=1.5 if

х	1.5	2	2.5	3	3.5	4
У	3.375	7.000	13.625	24.000	38.875	59.000

OR

6.

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.1 from the following table:

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031

UNIT–IV

7. a) Fit a straight line to the following data

Х	1	2	3	4	5	6	7	8	9
у	9	8	10	12	11	13	14	16	5

b) Form the partial differential equation by eliminating a and b from $2z=(x-a)^{1/2}+(y-a)^{1/2}+b$.

OR

8. a) Fit a straight line by the method of least squares method to the following data

X	1	2	3	4	5
У	14	27	40	55	68

b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from

(*i*)
$$z = a x + b y + a^{2} + b^{2}$$
 and (*ii*) $z = f(x + a y) + g(x - a y)$
UNIT-V

9. a) Obtain a half range cosine series for $f(x) = (x-1)^2$ in interval 0 < x < 1. Deduce the sum of

series
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{f^2}{8}$$

b) Find the Fourier sine transform of the function $f(x) = \frac{e^{ax}}{x}, a > 0$.

OR

10. a) Find the half range cosine series for $f(x) = x^2$ in the range $0 \le x \le f$

b) Find the sine and cosine transform of $f(x) = \begin{cases} \sin x, 0 < x < a \\ 0, x \ge a \end{cases}$

		R-15		
	bd	e: 5G231		
		II B.Tech. I Semester Supplementary Examinations October 2020 Switching Theory and Logic Design		
		(Electrical and Electronics Engineering)		
Ν	۱a	x. Marks: 70 Time: 3 Hours		
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)		

,		UNIT-I		
. a))	Convert the following numbers as indicated:		
		(i) Decimal 225.225 to binary, octal and hexadecimal.(ii) Binary 11010111.110 to decimal, octal and hexadecimal.		
b)	`	What is the Gray code? What are the rules to construct Gray code? Develop the 4 bit Gray		
D))	code for the decimal 0 to 15.		
		OR		
. a))	State and prove De-Morgan's Laws.		
b))	Draw the symbols and truth tables of all logic gates and explain.	1	
		UNIT–II		
. a))	Prove that OR-AND network is equivalent to NOR-NOR network.		
b))	Express the Boolean function F=A+B ¹ C as a sum of min-terms.		
		OR		
		Realize the following expression using K-map $F = M(0,1,2,4,5,6,9,11,12,13,14,15)$ and		
		implement the same using NOR logic.	1	
		UNIT–III		
		Realize the following functions using PLA		
		$f_{1}(A P C) = (0.2.1.5) f_{1}(A P C) (1.5.6.7)$		
		$f_1(A, B, C) = (0, 2, 4, 5)$ $f_2(A, B, C) = (1, 5, 6, 7)$	1	
		OR	1	
		OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL	1	
		OR	1	
		OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	
		ORFor the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.InputsOutput xxABCD000InputsOutput xxABCD000InputsOutput xABCD000InputsOutput xABCD00InputsOutput xInputsInputsInputsInputsInputsInputsInputsInputsInputsInputsInputsInputsInputsInputsInputs	1	
		OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	
		For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	
-		For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $ \frac{\boxed{\text{Inputs}} Output}{x y z A B C D} \\ 0 0 0 1 1 0 1 \\ 0 1 0 1 0 1 \\ \hline 0 1 0 1 0 \\ \hline 1 0 0 1 0 \\ \hline 1 0 0 1 0 \\ \hline 1 0 1 0 \\ \hline 1 0 1 0 \\ \hline 1 0 1 \\ \hline 1 0 0 \\ \hline 1 0 \\ \hline 1$	1	
		For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
		ORFor the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.		
		OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Output x y z A B C D 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1	1	
. a)		OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Inputs Output x y Z A B C D Inputs Output x y Z A B C D 0 0 0 1 0 1 <td>1</td>	1	
)	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Output x y z A B C D 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1	1	
. a))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Inputs Output x y z A B C D 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1	1	
. a) b)))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Output x y z A B C D 0 0 0 1 0 1 1 1 1 0 0 0 1	1	
. a) b))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
. a) b) . a))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Output x y z 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1	1	
. a) b) . a)))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Output x y z A B C D 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1	1	
. a) b) . a) b))))))))	ORFor the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.ImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputsOutputImputs <td colsp<="" td=""><td>1</td></td>	<td>1</td>	1
. a) b) . a) b) . a))))))))	For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. $ \frac{Inputs}{x \ y \ z \ A \ B \ C \ D} \\ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $	1	
. a) b) . a) b) . a))))))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs 0 Output x y z A B C D 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1	1	
. a) b) . a) b) . a) b))))))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs Value Output x y x A B C D 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	1	
. a) b) . a) b) . a)))))))))))))	OR For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. Imputs 0 Output x y z A B C D 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1	1	

Hall Ticket Number :														
												∣ R-15		

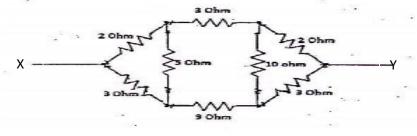
Code: 5G233

II B.Tech. I Semester Supplementary Examinations October 2020

Electrical Circuits-I

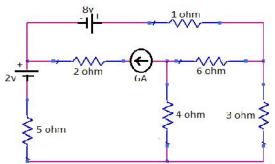
(Electrical and Electronics Engineering)

Time: 3 Hours

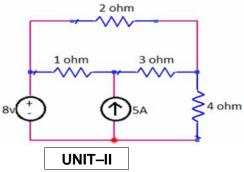

Max. Marks: 70

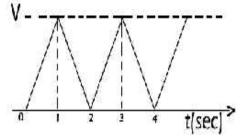
Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I



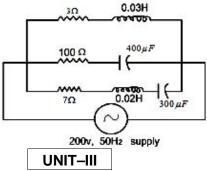
- 1. a) Discuss the V-I relationships for R,L and C parameters
 - b) Determine the resistance between X-Y terminals for the network shown in fig.1



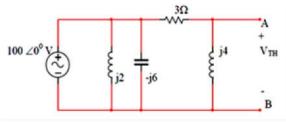

2. a) Determine the mesh currents and determine the power delivered by 8V voltage source for the circuit shown in fig

b) Determine the node voltages and current through each resistor for the circuit shown in fig

- 3. a) Define the terms: i) Instantaneous value ii) Cycle iii)Time period iv) Frequency
 - b) Find R.M.S., Average value and the form factor for the wave shown in fig

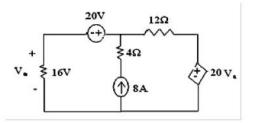


- 4. a) Define the terms: i) Resonance
- ii) Band Width

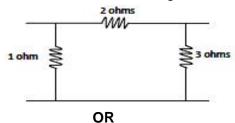

iii) Resonant Frequency

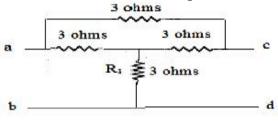
iv) Q-factor

b) Find the current through each branch, total current and draw the vector diagram for the circuit shown in fig



- 5. a) Derive the condition for maximum power transfer in DC circuits
 - b) Find the load impedance that draws maximum power and the amount of maximum power drawn for the circuit shown in figure.



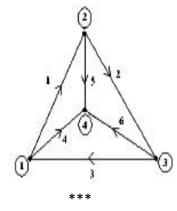

6. a) Find the voltage drop across16 resistor using super position theorem for the circuit shown in figure

- b) State and Explain compensation theorem
- 7. a) Obtain the relationship between Z and ABCD parameters.
 - b) Find the ABCD parameters of the network shown in fig

- 8. a) Obtain the condition for symmetry and reciprocity for h-parameters
 - b) Find the Y-parameters for the network as shown in fig

UNIT-V

9. a) Define the terms:


i) Self inductance ii) Mutual inductance

iii) Reluctance iv) Magneto Motive Force

b) Two coupled coils with L₁=0.02H, L₂=0.01H and k=0.5 are connected in four ways Series Aiding, Series Opposing, Parallel Aiding and Parallel Opposing. What are the four equivalent inductances?

OR

- 10. a) Define the terms: i) Graph ii) Tree iii) Link iv) Twig
 - b) Determine the Tieset and Cutset matrix for the graph shown in fig

