	I Ticket Number :
00	le: 5G232
	II B.Tech. I Semester Supplementary Examinations November 2019
	Electrical Machines-I
N	(Electrical and Electronics Engineering) Nax. Marks: 70 Time: 3 Hours
1.	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

、	
a)	Define pole pitch, front pitch, back pitch, resultant pitch, commutator pitch and illustrate them with the help of neat sketches?
b)	Why most practical energy conversion devices use magnetic field as the coupling medium
	between electrical and mechanical systems?
a)	OR Explain why equalizer connections are used in lap windings and dummy coils are sometimes
u)	used in wave winding?
b)	Elucidate the principle of energy conversion of electromechanical system?
	UNIT–II
a)	Derive an equation for EMF in a DC machine.
b)	An 8-pole DC generator has per pole flux of 40 Wb and winding is connected in lap with 960
	conductors. Calculate the generated emf on open circuit when it runs at 400 rpm. If the armature is wave wound at what speed must the machine be driven to generate the same voltage.
	OR
a)	Discuss the armature reaction in dc machines.
a) b)	Explain the different types of dc generators and mention their applications.
0)	
	What is the experimental procedure to obtain the load characteristics of dc shunt generator?
	Explain.
	OR
a)	Draw OCC of a dc shunt generator and define critical speed and critical resistance
b)	A dc shunt generator has the following open circuit magnetization curve at its rated speed.
	Field current (A) 0.5 1.0 1.5 2 3 4
	EMF (V) 180 340 450 500 570
	The resistance of the field circuit is 200 . The generator is driven at its rated speed. Find
	the terminal voltage on open circuit. (Use graph paper)
a)	Explain the working principle of DC motor.
b)	What are the factors effecting the speed of dc motors?
	OR
a)	Sketch the torque vs current characteristics of dc shunt and dc series motor with relevant
	torque equation?
b)	List the applications of dc shunt, dc series and dc compound motors
	UNIT-V
a)	Describe the back to back test in detail with advantages and disadvantages?
b)	In a brake test on a dc shunt motor, the effective load on the pulley was 13kg, the effective
	diameter of the pulley was 46cm, the speed 1400rpm, the armature current 23A, when the
	supply voltage is 220V.Calculate the efficiency of the motor at this load when field resistance is 110 ohms.
	OR
	A 50KW, 440V Shunt generator having an armature circuit resistance including inter-pole
	winding of 0.15 ohms at normal working temperature was run as a shunt motor on no-load at

current of 1.5A. Calculate the efficiency of the shunt generator at 3/4th of full-load

14M

Hall	Tick	et Number :													
Code	e: 5 G	539			1	L		1			1	J	Ţ	R-15	
		.Tech. I Ser	id N	Nec	han	ics	anc	l Hy	dra	ulic	atior Ma neeri	chi	nes	nber 2019	
-		arks: 70 ver all five uni	-				e qu		n fro	-				Time: 3 Hc I = 70 Marks)	ours
1.	a)	Write briefly	abo	ut dif	feren	t typ	es of	Pres	ssure	mea	asurir	ng de	evices		7M
	b)	molecular w	veigh	t of	air a	s 28	8.97,	calc	ulate	the	mas	s of	air de	ar. Assuming elivered. Also the air being	
		delivered.													7M
2.	a)	What is the	diffe	arono	o ha	two	n II.	OF		aront	ial m	2001	notor	and inverted	
۷.	a)	U-tube diffe											netei	and invented	7M
	b)	in diameter kinematic vi	and scos	I 300 ity of	0.00 (n loi)5 m [°]	ng, T ²/s ai	The nd sp	clear Decifi	ance c gra	is f avity (filled 0.90.	with If the	eve 80.20mm oil having a shaft moves	71.4
		axially at 0.5	som/s	s. tin	a the	resi				by tr	ne oli	ont	ne sna	art.	7M
3.	a)	oil having sp connected t coefficient o	becifi to the of dis	c gra e ver schar	vity o nturin ge fo	of 0.9 neter or th	75 mr 9. Th [.] is 1 ie ve	e rea 50 n nturi	e is iding nm o mete	shov f me r if t	wn by ercury :he fl	/ the / coli ow i	U tube umn. (rate is	e flow rate of e manometer Calculate the 5 1.7 m ³ /min. let and throat	7M
	b)	Derive friction	on fa	ctor f	or th	e flo	w thr	ougł	n the	circu	ular p	ipe l	oy Dar	rcy Weisbach	
		equation?							_						7M
4.	\sim	Two nines o	ng of	10cr	n dia	mete	r 20	OF		and a	noth	ar 15	cm dia	ameter, 400 m	
4.	a)	long are con and 0.006 fc	necte or the charg	ed in Iarge je an	paral e pipe d hea	llel. 7 e. Th ad lo	The fr e tota ss in	ictior al dis eacl	n fact charo n pipo	ors a ge thi e. Ne	re 0.0 rough eglect	0075 h the t min	for the syster	e smaller pipe n is 50 lit/sec. ses. Calculate	7M
	b)	State the mo	men	tum e	equat	ion a	nd m	entio	n sor	ne of	f its e	ngine	eering	applications	7M
								υΝΙΤ							
5.	a)	normally on	a se	ries	of fla	t var	nes n	noun	ted o	ver a	a whe	el. I	f the v	ond impinges velocity of the the wheel,(ii)	
		بالمعنية مالا		: م ما ۱		. م ما 4				- I			- برمارد -	ulla afficient and	714

- the work done by the jet on the wheel per second, and (iii) the hydraulic efficiency 7M
- b) Derive an expression for the force exerted by a jet striking the curved plate at one end tangentially when the plate is symmetrical.
 7M

6.	a)	Explain hydroelectric power plant working principle with neat sketch.	7M
	b)	Discuss various type of Draft tubes with neat sketch.	7M
7.	a)	UNIT-IV A Kaplan turbine works under a head of 60m at a speed of 145rpm utilizing 175 m ³ /s of water. Diameter of runner and hub are 5.60m & 3.20m. Turbine develops 82500 kW. Find i) flow ratio ii) speed ratio iii) overall efficiency iv) specific speed.	7M
	b)	Explain what is meant by unit quantities in turbines. Derive expressions for unit speed, unit discharge and unit power of a turbine.	7M
		OR	
8.	a)	What is the importance of a draft tube in a Francis turbine? Discuss different types of draft tubes.	7M
	b)	A turbine is to operate under a head of 25 meters at 200 rpm. The discharge is 9 m ³ /sec. If the turbine efficiency is 90% determine: (i) specific speed of the turbine (ii) power generated (iii) performance under a head of 20 meters. Also state the type of the turbine.	7M
_		UNIT-V	
9.	a)	List out necessary precautions against cavitation in centrifugal pumps.	7M
	b)	Explain the working of reciprocating pump with neat sketch.	7M
		OR	
10.	a)	Draw and discuss characteristic curves of a pump.	7M
	b)	A double acting reciprocating pump having piston area 0.1m has a stroke of 0.30m long. The pump is discharging 2.4 m ³ of water per minute at 45 rpm through a height of 10 m. Find the slip of the pump and power required to drive the pump.	7M

на	Ticket Number : R-15	
Coc	e: 5GC32 Il B.Tech. I Semester Supplementary Examinations November 2019	
	Mathematical Methods-III	
	(Common to EEE & ECE)	
Mc	x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs

	UNIT-I	
2)	$\begin{vmatrix} -1 & -5 & 5 & -1 \\ 1 & 1 & -1 & 0 \end{vmatrix}$	
a)	Reduce the matrix $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & -2 & 6 & -7 \end{bmatrix}$ to Echelon form and find its rank.	
	$\begin{bmatrix} -1 & -2 & 6 & -7 \end{bmatrix}$	71
	$\begin{bmatrix} 6 & 2 & 1 \end{bmatrix}$	
b)	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 6 & 2 & 1 \\ 6 & 1 & 2 \\ 7 & 2 & 2 \end{bmatrix}$ and find its inverse.	
	$\begin{bmatrix} 7 & 2 & 2 \end{bmatrix}$	71
a)	OR State Caulay Hamilton theorem and varify Caulay Hamilton theorem for	
a)	State Cayley-Hamilton theorem and verify Cayley-Hamilton theorem for $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$	
	$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5 \end{bmatrix} \text{ and hence find } A^{-1}.$	
	$\begin{bmatrix} 1 & -1 & 5 \end{bmatrix}$	8
b)	Prove that A^m has the eigen values $\binom{m}{1}, \binom{m}{2}, \binom{m}{3}, \dots, \binom{m}{n}$ if $\binom{1}{1}, \binom{1}{2}, \binom{3}{3}, \dots, \binom{m}{n}$ are the	
	eigen values of A, where m being a positive integer.	6
	UNIT-II	
a)	Evaluate $\sqrt[3]{24}$ by Newton Raphson method	7
b)	Employ Taylor's method to obtain appropriate value of y at $x = 0.2$ for the differentia	I
	equation $\frac{dx}{dy} = 2y + 3e^x$, $y(0) = 0$. Compare the numerical solution obtained with the	
	dy exact solution.	7
	OR	,
a)	Find a root of the equation $x^3 - 2x - 5 = 0$, using the Bisection method correct to)
	three decimal places.	7
b)	Using D K method of D k order calls $dy = y^2 - x^2$ with (0) 1 at x = 0.2.0.4	
5)	Using R-K method of IV order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2, 0.4$	7
	UNIT–III	
a)	Find the missing term in the table	
	x 0 1 2 3 4 f(x) 1 3 9 - 81	7
b)	Find first and second derivatives of y at x=1.5 if	-

х	1.5	2	2.5	3	3.5	4	
У	3.375	7.000	13.625	24.000	38.875	59.000	7M
			OR				-

6. a) Use Lagrange's interpolation formula to find the value of y when x = 10, if the following values of x and y are given

X	5	6	9	11	
У	12	13	14	16	7M

b) Use Trapezoidal rule and Simpson's $\frac{1}{3}$ rule to estimate $\int_{0}^{1} \frac{1}{1+x^{2}} dx$

7.	a)	Fit a second degree parabola to the following data

/		5 1		5			
	X	0	1	2	3	4	7M
	у	1	1.8	1.3	2.5	6.3	

b) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

8. a) Fit the curve of the form $y = ae^{bx}$ to the following data

x	0	1	2	3	
У	1.05	2.10	3.85	8.30	7M

b) Solve
$$(mz - ny)p + (mx - lz)q = (ly - mx)$$

UNIT-V
s for the function
$$f(x) = x - x^2$$
 in the interval $[-f, f]$ Hence

9. a) Obtain the Fourier series for the function
$$f(x) = x - x^2$$
 in the interval $[-f, f]$ Hence
show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \infty = \frac{f^2}{12}$ 7M

b) Show that $e^{\frac{x^2}{2}}$ is a self-reciprocal with respect to Fourier Transform.

OR

10. a) Obtain Fourier series for the function $f(x) = \begin{cases} fx, 0 \le x \le 1 \\ f(2-x), 1 \le x \le 2 \end{cases}$ and hence

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{f^2}{8}$$
7M

b) Find the Fourier sine transform of
$$\frac{x}{x^2 + a^2}$$
 and the Fourier cosine transform of $\frac{1}{x^2 + a^2}$ 7M

UNIT–IV

OR

7M

Code: 5GC32

7M

7M

7M

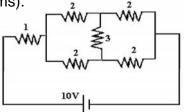
Hall	Tick	et Number :												r	
Code	e: 5 G	-231								J		J]	R-15	
	II B	.Tech. I Sem	Swi	tch	ing	The	ory	and	Exar d Lo nics E	gic	Des	sign		ber 2019	
-		arks: 70 er all five unit	-				e qu		n fro	_				Time: 3 Ho = 70 Marks)	Urs
								UN	IIT–I						
1.	a)	Convert the f	follov	ving	num	bers									
		i. (4567	') ₈ to	base	e 10.										
		ii. (1100					se 8	and	base	4.					
		iii. (53.15	5 7 5)1	₀ to	base	2.									8M
	b)	i. Explain er	ror d	etect	tion c	odes	s. Wh	at is	the d	rawb	ack o	of err	or deteo	ction codes?	
		ii. Construct	even	n par	ity 7 I	bit ha	ammi	ng co	ode fo	or the	mes	sage	0100.		6M
								OF	R						
2.	a)	State duality	theo	rem	. List	Boo	lean	laws	and	their	[.] dua	ls.			6M
	b)	Simplify the f	follov	ving	Bool	ean	funct	ions	to m	inimu	um n	umbe	er of lite	erals.	
		i. F = A	BC +	AB	C' + .	A'B.									
		ii. F = (A	\+B)'	(A'+	-B').										8M
								UN	IT–II						
3.	a)	Define prime	impli	cant	and	esse	ntial	prim	e imp	lican	t with	exar	mple us	ing K-map.	7M
	b)	Find all the p and determin		•					wing	Bool	lean ⁻	funct	ion usii	ng K-map	
		F(A,B,C,D) =	= (1,	,3,4,	5,9,1	0,11	,12,1	3,14	l,15)						7M
								OF	R						
4.	a)	Simplify the fusing NOR g		•	Boo	lean	expr	essio	ons i	ising	K-m	ap a	nd impl	ement them	
		i. F (A,	В, C,	, D) :	= AB	'C' +	AC	+ A'(CD'.						
		ii. F (W,	Χ, Υ	, Ζ)	= W'	X'Y'Z	Z' + V	VXY	'Z' +	W'X'	YZ +	WX	YZ.		8M
	b)	Simplify the f and impleme		•				ion f	or mi	nima	I SO	P for	m usin	g K-map	
		F(W,X,Y,Z) =	= (1	,3,7,	11,1	5) +	d(0,2	2,5).							6M
								UN	T–III						
5.	a)	Implement fu	III ad	der ı	using	dec	oder	and	OR g	gates	6.				7M
	b)	Design a co generates ar							•				•		7M
								OF	R						
6.	a)	Explain the ge	enera	l con	nbina	tional	I PLD	conf	igura	tion v	vith s	uitabl	e block	diagram.	7M
	b)	Give the logic	imple	emer	ntatio	n of a	1 32 x	4 bit	. & 8 >	۲4 bi	t ROM	/ usir	ng suital	ble decoder	7M
	,													Dage 1	of 2

		UNIT–IV	
7.	a)	Design a mod-6 synchronous counter using T-flip flop.	7M
	b)	Draw the circuit of a negative edge triggered JK Flip-Flop with active high. Explain its operation with the help of truth table.	7M
		OR	
8.	a)	Design a sequential circuit with two D-Flip-Flops A and B and one input x. When $x=0$, the state of the circuit remains the same. When $x=1$, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00 and repeats.	6M
	b)	besign Mod-12 synchronous counter using J-K flip –flops	8M
	,		
9.	a)	Discuss mealy and Moore machine models of sequential machines.	7M
	b)	Explain the minimization procedure for determining the set of equivalent state of a specified machine M.	7M
		OR	
10.	a)	Explain the salient features of the ASM chart.	10M
	b)	Draw an ASM chart and state diagram for the synchronous circuit having the following description:" The circuit has a control input 'x', clock and outputs A and B. If $x = 1$, on every clock edge (rising of falling) the code on BA changes from $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00$ and repeats. If $x = 0$, the circuit holds the present state".	4M
		ווטועש נוופ אופשפווו שומופי.	41

Hall Ticket Number :			<u> </u>	 <u> </u>			R-15
Loll Ticket Number							

Code: 5G233

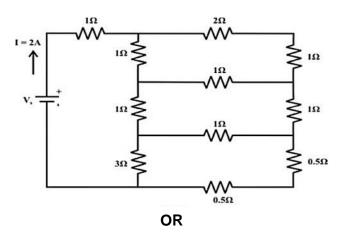
II B.Tech. I Semester Supplementary Examinations November 2019

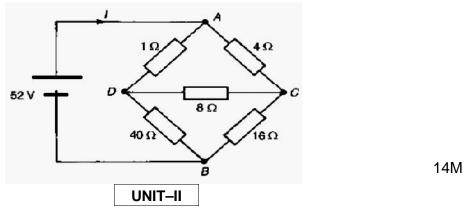

Electrical Circuits – I

(Electrical and Electronics Engineering)

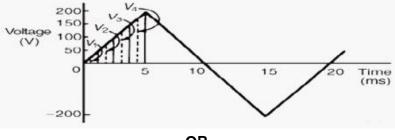
Max. Marks: 70

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)


1. a) Find the total power dissipated in the circuit shown in the figure. (All resistances are in ohms).


7M

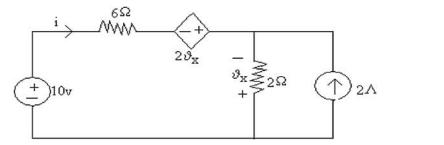
7M


b) Find the value of the voltage source V_s that delivers 2 Amps current through the circuit as shown in figure.

2. For the bridge network shown in figure below by using suitable delta – star transformations, Find The value of the single equivalent resistance that replaces the network between terminals A and B. (i) The current supplied by the 52 V source. (ii) The current flowing in the 8 resistor.

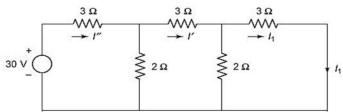
3. For the periodic waveforms shown in figure below, determine: (i) Average value over half cycle. (ii) Frequency. (iii) RMS value. (iv) Form factor. (v) Peak factor

14M


7M

7M

- a) Define the Q factor and derive an expression showing the relation between Q -factor, Band width and selectivity of frequencies at resonance.
 - b) Show that for a series RLC circuit $f_r = \frac{\int_{f_r}^{f_r} f_2}{\sqrt{f^1}} f$ = where f_r resonant frequency and f_1 and f_2 are half power frequencies.

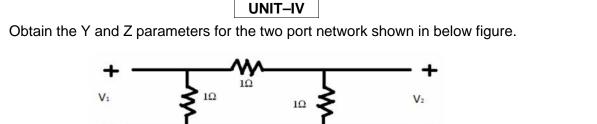

5. a) Find the current in the 6 ohm resistor shown in circuit diagram, using superposition theorem.

b) State and explain Maximum power transfer theorem with an example.

OR

6. a) Verify the reciprocity theorem for the given circuit shown below.

7M

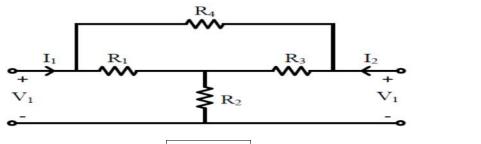

7M

7M

7M

b) Explain Millman's Theorem with a suitable example.

7. a)


7M

7M

a) Obtain the relation between Hybrid and ABCD parameters.

OR

8. Determine the [Z] and [Y] parameters of the following two port network based on two-port interconnection technique.

UNIT–V

14M

7M

7M

7M

- 9. a) Two coils connected in series-aiding fashion have a total inductance of 250mH. When connected in a series-opposing configuration, the coils have a total inductance of 150 mH. If the inductance of one coil is three times the other, find L₁, L₂ and M. What is the coupling coefficient?
 - b) Distinguish between self-inductance and mutual inductance.

OR

- a) The two coils are connected in Parallel and they have self-inductance of 40mH and 10mH respectively. The total inductance of the circuit is found to be 50 mH. Determine: (i) The mutual inductance between the two coils. (ii) The coefficient of coupling.
 - b) Develop an expression for equivalent inductance of two coupled coils connected in parallel with mutual inductance.
 7M

	Hall	Ticket Number :]			_
				<u> </u>											R-15	
	Code: 5G234 Il B.Tech. I Semester Supplementary Examinations November 2019															
Electromagnetic Fields																
			(Ele	ectri	cal	and	Elec	tror	nics E	Ingi	neer	ing)		_	_	
		k. Marks: 70 Answer all five uni	ts hv	cho	osin	n on	e au	estic	on fra	m e	ach	unit (5 x 1/		ne: 3 Hour	S
			13 0 y	CHC	/OSII I	<u> </u>		*****			uch		571-	- 70	Marks j	
							UNIT	- I								
1.	a)	a) State and explain vector form of Coulombs law?														4M
	b)	Derive the expression situated h meter a							•		•		•			
		a charge density	-			aloc	aion	ig ito				10 01	largea	unite	villing with	10M
		0 ,					0	R								TOIVI
2.	a)	Prove that E=- \	/?													6M
	b)	Derive Maxwell's First equation as applied to the electrostatics using Gauss's law?														8M
3.	a)	Derive the expres	sion	for t	he er				n a p	arall	el pla	ate ca	pacito	r		8M
	b)												plates of			
		30 cm X30 cm surface area, separated by 5 mm gap in air. What is the total energy														
		stored by the cap			he ca	apac	itor i	f the	capa	acito	r is c	harge	ed with	n 500	V? What	
		is the energy den	Sity?				0	R								6M
4.	2)	Darive the everes	oion	fort	orau)							714
4.	a) b)	Derive the expres			•		•									7M
	b)	Derive Laplace Lo	quai	UII II	UIIII		JNIT-									7M
5.	a)	Derive an express	sion	for m	nagne				_ sity a	at an	y poi	nt on	the ax	kis of	a circular	
	,	current carrying c			•				-							7M
	b)	State and explain	Biot	-sava	art's	law?										7M
6	2)			. fa.,)R	10.00		4		-	44	avia of a	
6.	a)	Derive an expressolenoid?	ssion	i tor	maę	gneti	с пе	ia in	itensi	ty a	it an	у роі	nt on	the a	axis of a	7M
	b)											h and	carries a	7 111		
	 b) A solenoid has 3000 turns, a length of l=150 cm, a radius of a= 2 cm and carri current of 100 mA. Find H at (0,0,20) cm and (0,0,150) cm. 									cames a	7M					
							, JNIT-]		,					7 101
7.	a)	Derive the expres	sion	for T	orqu				t looj	o pla	iced i	n a n	nagnet	ic fiel	d.	7M
	b)	Derive the bound	ary c	ondi	tions	for r	nagn	netic	field	inter	nsity	and fl	ux dei	nsity.		7M
							0	R								
8.	a)	Derive the expres	sion	for e	energ	y sto	ored	in a i	magr	netic	field					7M
	b)	Derive the self-ind	ducta	ance	of a	soler	noid		٦							7M
	,		_				JNIT									
9.	,	State and explain		•					•					<i></i>		7M
	b)	A circular loop o									• •			field	given by	
		<i>B</i> =0.5cos377t(3a	4y+42	tz) l€	esia.	rind			Induc	ed I	n the	юор				7M
10.	a)	Explain the mod	lificat	tions	of	Max	-	O R s eo	uatio	ns	for t	ime	varvin	y ele	ctric and	
)	magnetic fields?			0.	an		_ 00	1.2.000					9 010		7M
	b)	Find the displace	emei	nt ci	urren	t wii	thin	a pa	aralle	l pla	ate d	capad	itor w	here	=100	
	,	A=0.1m ² ,d=0.05m						•		•		•		-	0,	7M
							*	**								