Basic Thermodynamics

(Mechanical Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) The working fluid, in a steady flow process flows at a rate of $220 \mathrm{~kg} / \mathrm{min}$. The fluid rejects 100 kJ / s passing through the system. The conditions of the fluid at inlet and outlet are given as $\mathrm{C}_{1}=320 \mathrm{~m} / \mathrm{s}, \mathrm{P}_{1}=6 \mathrm{bar}, \mathrm{U}_{1}=2000 \mathrm{~kJ} / \mathrm{kg}, \mathrm{v}_{1}=0.36 \mathrm{~m}^{3} / \mathrm{kg}$ and $\quad \mathrm{C}_{2}=140 \mathrm{~m} / \mathrm{s}, \mathrm{P}_{2}=1.2 \mathrm{bar}$, $\mathrm{U}_{2}=1400 \mathrm{~kJ} / \mathrm{kg}, \mathrm{V}_{2}=1.3 \mathrm{~m}^{3} / \mathrm{kg}$. Determine the power capacity of the system in MW. The change in potential energy may be neglected.
b) A 15 cm diameter vertical cylinder, closed by a piston contains a combustible mixture at a temperature of $30^{\circ} \mathrm{C}$. The piston is free to move and its weight is such that the mixture pressure is 3 bar. Upper surface of the piston is exposed to the atmosphere. The mixture is ignited. As the reaction proceeds, the piston moves slowly upwards and heat transfer to the surroundings takes place. When the reaction is complete and the contents have been reduced to the initial temperature of $30^{\circ} \mathrm{C}$, it is found that the piston has moved upwards a distance of 8.5 cm and the magnitude of heat transfer is kJ. Evaluate i) the work and ii) decrease in internal energy of the system

OR

2. a) In a piston-cylinder device, 300 g of saturated water vapour, maintained at 200 kPa , is heated by a resistance heater installed within the cylinder for 10 min by passing a current of 0.35 ampere from a 220 V source. The heat loss from the system during the heating process is 2.2 kJ . Calculate the work done and the final temperature of the steam.
b) Write short notes on the following.
i. Zeroth law and its application
ii. Thermodynamic temperature scale
iii. Law of corresponding states

UNIT-II

3. a) A gas mixture of 2.2 kg mass, which consists of 75% nitrogen, 22% oxygen and 3% carbon dioxide by mass, is contained in a piston-cylinder device. The mixture is initially at 101 kPa and 310 K . It is then compressed to 500 kPa in a reversible polytrophic process with an index of 1.3. Determine the work done, heat transfer, and change in entropy associated with the compression process. Take y for $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2} as 1.4, 1.4 and 1.3 respectively.
b) Calculate the entropy change of the universe as a result of the following processes:
i. A copper block of 750 g mass and with Cp of $150 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $9^{\circ} \mathrm{C}$.
ii. The same block at $9^{\circ} \mathrm{C}$ is dropped from a height of 100 m into the lake.

Two such blocks at 100 and $0^{\circ} \mathrm{C}$ are joined together

OR

4. a) A heat pump working on a reversed Carnot cycle takes in energy from a reservoir at $3^{\circ} \mathrm{C}$ and delivers it to another reservoir at $77^{\circ} \mathrm{C}$. The heat pump gets power from a reversible engine taking heat from the reservoir at $1077^{\circ} \mathrm{C}$ and rejecting to the reservoir at $77^{\circ} \mathrm{C}$. For $100 \mathrm{~kJ} / \mathrm{s}$ of energy supplied to the reservoir at $77^{\circ} \mathrm{C}$, estimate the energy taken from the reservoir at $1077^{\circ} \mathrm{C}$
b) Derive the expression for maximum work obtainable by using one finite body at temperature T and a thermal reservoir at temperature $\mathrm{T}_{\mathrm{o}}, \mathrm{T}>\mathrm{T}_{\mathrm{o}}$.

UNIT-III

5. a) Water is boiled in a pan covered with a poorly fitting lid at a specified location. Heat is supplied to the pan by a $2-\mathrm{kW}$ resistance heater. The amount of water in the pan is observed to decrease by 1.19 kg in 30 minutes. If it is estimated that 75 percent of electricity consumed by the heater is transferred to the water as heat, determine the local atmospheric pressure in that location.
b) Determine the specific volume, internal energy, and enthalpy of compressed liquid water at $100^{\circ} \mathrm{C}$ and 15 MPa using the saturated liquid approximation. Compare these values to the ones obtained from the compressed liquid tables.

OR

6. a) A piston-cylinder device initially contains 50 L of liquid water at $40^{\circ} \mathrm{C}$ and 200 kPa . Heat is transferred to the water at constant pressure until the entire liquid is vaporized.
i. What is the mass of the water?
ii. What is the final temperature?
iii. Determine the total enthalpy change.
iv. Show the process on a $T-v$ diagram with respect to saturation lines.
b) A $0.3-\mathrm{m} 3$ rigid vessel initially contains saturated liquid- vapor mixture of water at $150^{\circ} \mathrm{C}$. The water is now heated until it reaches the critical state. Determine the mass of the liquid water and the volume occupied by the liquid at the initial state.

UNIT-IV

7. a) An insulated rigid tank is divided into two compartments by a partition. One compartment contains 7 kg of oxygen gas at $40^{\circ} \mathrm{C}$ and 100 kPa , and the other compartment contains 4 kg of nitrogen gas at $20^{\circ} \mathrm{C}$ and 150 kPa . Now the partition is removed, and the two gases are allowed to mix. Determine (i) the mixture temperature and (ii) the mixture pressure after equilibrium has been established
b) $0.03 \mathrm{~m}^{3}$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and $15^{\circ} \mathrm{C}$. The gas is compressed isothermally and reversibly until the pressure is 4.2 bar. Calculate the change of entropy, the heat flow, and the work done, and sketch the process on a $p-v$ and T-s diagrams. Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen $=28$.

OR

8. a) A rigid vessel of volume $0.4 \mathrm{~m}^{3}$ contains 10 kg of air at 303 K . Using (i) the perfect gas equation, (ii) the Vander Walls' equation of state and (iii) generalized compressibility chart, determine the pressure which would be exerted by the air on the vessel.
b) A gas mixture of 2.2 kg mass, which consists of 75% nitrogen, 22% oxygen and 3% carbon dioxide by mass, is contained in a piston-cylinder device. The mixture is initially at 101 kPa and 310 K . It is then compressed to 500 kPa in a reversible polytrophic process with an index of 1.3. Determine the work done, heat transfer, and change in entropy associated with the compression process. Take γ for $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2} as 1.4, 1.4 and 1.3 respectively

UNIT-V

9. a) The minimum pressure and temperature in an Otto cycle are 100 kPa and $27^{\circ} \mathrm{C}$. The amount of heat added to the air per cycle is $1500 \mathrm{~kJ} / \mathrm{kg}$.
i. Determine the pressures and temperatures at all points of the air standard Otto cycle.
ii. Also calculate the specific work and thermal efficiency of the cycle for a compression ratio of $8: 1$.
b) The efficiency of an Otto cycle is 60% and $\gamma=1.5$. What is the compression ratio?

OR

10. a) An engine working on Otto cycle has a volume of 0.45 m 3 , pressure 1 bar and temperature $30^{\circ} \mathrm{C}$ at the beginning of compression stroke. At the end of compression stroke, the pressure is 11 bar. 210 kJ of heat is added at constant volume. Determine :
i. Pressures, temperatures and volumes at salient points in the cycle.
ii. Percentage clearance.
iii. Efficiency.
iv. Net work per cycle.
v. Mean effective pressure.
vi. Ideal power developed by the engine if the number of working cycles per minute is 210 . Assume the cycle is reversible.
b) The mean effective pressure of a Diesel cycle is 7.5 bar and compression ratio is 12.5 . Find the percentage cut-off of the cycle if its initial pressure is 1 bar .
\square

Code: 5GC31

II B.Tech. I Semester Supplementary Examinations May 2017

Engineering Mathematics -III

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)

1. a) Find the values of a and b for which the equations $x+a y+z=3, x+2 y+2 z=b, x+5 y+3 z=9$ are consistent. When will these equations have a unique solution?
b) Find the rank of the matrix $\left[\begin{array}{cccc}5 & 5 & 5 & 5 \\ 1 & 4 & 0 & 7 \\ 0 & -2 & 1 & 3\end{array}\right]$ by reducing it into Row-Echelon form.
2. a) Prove that the sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.
b) Verify Cayley-Hamilton theorem for $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence find A^{-1} and A^{3}.

UNIT-II

3. a) Find a recurrence formula to calculate \sqrt{N} using Newton-Raphson method and hence evaluate $\sqrt{17}$.
b) Estimate the values of $f(1.2)$ and $f(2)$ from the date given.

x	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5

OR
4. The following table gives the velocity v of a particle at time t :

$t(\mathrm{sec})$	0	2	4	6	8	10	12
$v(\mathrm{~m} / \mathrm{s})$	4	6	16	34	60	94	136

Find the distance moved by the particle in 12 seconds and also the acceleration at $t=6$ seconds.

UNIT-III

5. Find $y(0.1)$ and $y(0.5)$ by Taylor's series method from $\frac{d y}{d x}=x y+1, y(0)=1$. Compare the numeric solution with its exact solution.

OR

6. Apply Milne's method to find a solution of $\frac{d y}{d x}=x-y^{2}, y(0)=0$ in the range $0 \leq x \leq 1$.

UNIT-IV

7. Obtain Fourier series of a function $f(x)=|x|,-\pi<x<\pi$ and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+---=\frac{\pi^{2}}{8}$.

OR

8. a) Form the partial differential equation by eliminating arbitrary constants a, b, c from $(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$.
b) Solve $\frac{\partial^{2} z}{\partial x \partial y}-\frac{x}{y}=100$ by the method of separation of variables.

UNIT-V

9. Find the analytic function $f(z)=u+i v$, if $2 u+v=e^{x}(\cos y-\sin y)$.

OR

10. a) Evaluate $\oint_{c} \frac{e^{z} \cos z}{\left(z-\frac{\pi}{2}\right)^{2}} d z$, where c is $|z|=2$. 10M
b) Evaluate $\oint_{c} z^{2} \cot z d z$, where c is the unit circle.
\square
|| B.Tech. I Semester Supplementary Examinations May 2017

Metallurgy \& Material Science

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

> ********

UNIT-I

1. a) Differentiate between a crystal, dendrite and a grain.
b) What are the three methods of obtaining fine grain size? Explain about each in brief.

OR

2. Write down the benefits obtained by alloying with examples. Give the classification of alloys and explain about each in brief.

UNIT-II

3. List out the methods of constructing phase diagrams. Discuss about construction of a phase diagram for a binary system where the two constituents are completely soluble in each other in both liquid and solid states. Apply lever rule and obtain chemical composition as well as amounts of different phases for a typical composition.

OR

4. a) Metal A melts at $650^{\circ} \mathrm{C}$ and metal B melts at $450^{\circ} \mathrm{C}$. When alloyed together, A and B does not form any compound or intermediate phase. Solid solubility of metal A in B and B in A is negligible. The metal pair forms a eutectic at $300^{\circ} \mathrm{C}$ with $40 \% \mathrm{~A}$ and $60 \% \mathrm{~B}$. Assume that the liquidus lines are straight. Draw the phase diagram for the alloy series and find:
(i) temperature at which 70% of A and 30% of B starts and completes solidification
(ii) for the same alloy, find the amount of solid phase and liquid phase at $400^{\circ} \mathrm{C}$
b) What is coring? How is it handled?

UNIT-III
5. a) Write a note on mechanical properties and applications of Grey Cast Iron.
b) Elaborate the purposes for which alloying of steels is performed.

OR

6. a) Write down the alloy designation system for aluminium alloys. Explain about each in brief.
b) Explain seasonal cracking of brass. How can this be handled?

UNIT-IV

7. a) What is hardenability of Steel? Explain the end quench test to obtain hardenability.
b) What is austempering? What are its benefits?

OR

8. What are the limitations of Iron - Iron carbide equilibrium diagram? Explain in detail the procedure followed in construction of TTT diagram.

UNIT-V

9. Discuss about steel making using an electric furnace. What are the advantages?

10 Write notes on
i) Cermets
ii) FRP
iii) MMC

Code: 5G531
II B.Tech. I Semester Supplementary Examinations May 2017
Mechanics of Solids
(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) A rod of 250 cm long and diameter 3.0 cm is subjected to an axial pull of 30 kN . If the modulus of elasticity of the material of the rod is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine stress, strain, the elongation of the rod and Poisson's ratio.
b) Derive a relation for change in length of a bar hanging freely under its own weight.

OR

2. a) Derive the relationship between bulk modulus and young's modulus.
b) A solid circular bar of diameter 20 mm when subjected to an axial tensile load of 40 kN , the reduction in diameter of the rod was observed as $6.4 \times 10-3 \mathrm{~mm}$. The bulk modulus of the material of the bar is 67 GPa . Determine the following: Young's Modulus, Poissson's ratio, Modulus of rigidity, change in length per meter and Change in volume of the bar per meter length.

UNIT-II

3. a) Derive the relationship between bending moment and shear force.
b) Draw the shear force and bending moment diagrams for the beam given in Fig.1.

Fig. 1

OR

4. A simply supported beam of length 6 m carries a UDL of $20 \mathrm{kN} / \mathrm{m}$, throughout its length and a point load of 30 kN at 2 m from the right support. Draw shear force and bending moment diagram. Also find the position and magnitude of maximum bending moment.

UNIT-III

5. a) State the assumptions made in the theory of simple bending and derive the simple bending equation.
b) A rectangular beam 120 mm wide and 270 mm deep is subjected to a maximum shear force 60 kN . Determine the average shear stress, maximum shear stress and shear stress at a distance 20 mm above the neutral axis.

OR

6. The cross section of a T-beam is as follows: flange thickness=10mm; width of flange $=100 \mathrm{~mm}$; thickness of $\mathrm{web}=10 \mathrm{~mm}$; depth of web=120 mm . If shear force of 2 kN is acting at particular section of the beam. Draw the shear stress distribution across the cross section.

UNIT-IV

7. A beam 6 m long, simply supported at its ends and carrying a point load of 55 kN at its centre. The moment of inertia of the beam is given as equal to 78×10^{6} mm^{4}. If E for the material of the beam $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, Calculate: (i) deflection at the centre of the beam and (ii) slope at the supports.

OR

8. A solid steel shaft is subjected to a torque of 50 kNm . If the angle of twist is 0.5 degree per meter length of the shaft and the shear stress is not to be allowed to exceed $95 \mathrm{MN} / \mathrm{m}^{2}$, find (i) suitable diameter for the shaft (ii) Final maximum shear stress, and (iii) Maximum shear strain in the shaft. Take $\mathrm{C}=80 \mathrm{GN} / \mathrm{m}^{2}$.

UNIT-V

9. A thin cylindrical shell 3.5 m long has 1.2 m internal diameter and 15 mm metal thickness. Calculate the circumferential and longitudinal stresses induced and also the change in the dimensions of the shell, if it is subjected to an internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poison's ratio $=0.3$. Also calculate change in volume.

OR
10. a) What are the assumptions made in Euler's column theory? Differentiate between a strut and column.
b) Derive the crippling load for a column with one end fixed and the other end free.
\square
Code: 5G534II B.Tech. I Semester Supplementary Examinations May 2017Manufacturing Technology(Mechanical Engineering)
Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$) *********
UNIT-I

1. a) What is pattern? Explain various allowances to be given for patterns. 7M
b) Describe centrifugal casting process and its advantages. 7M
OR
2. a) Describe Pressurized and non-pressurized gating systems 7M
b) Describe at least six casting defects, state their remedies. 7M
UNIT-II
3. a) Describe Resistance welding process .state few applications. 7M
b) Describe Friction welding and state its advantages. 7M
OR
4. a) What arc blow in arc welding? how this can be eliminated,. 7M
b) Compare TIG\&MIG welding processes. 7M
UNIT-III
5. a) Compare hot and cold rolling, state few applications. 7M
b) Describe Rolling process. And describe some Rolling stands. 7M
OR
6. a) Describe Embossing, and Coining process, and differentiate them. 7M
b) Describe wire drawing and cup drawing processes. 7M
UNIT-IV
7. a) Describe drop forging process and roll forging process. 7M
b) What is Rotary forging and state its advantages 7M
OR
8. What is Extrusion? Discuss various types of extrusion process, stating applications, merits\& demerits. 14M
UNIT-V
9. a) Classify plastics. And state their applications. 7M
b) Describe compression moulding process and state its applications. 7M
OR
10. a) Describe injection moulding process and state its applications. 7M
b) Describe blow moulding process and state its applications. 7M
