<u> </u>	de: 5GC31
CU	II B.Tech. I Semester Supplementary Examinations June 2024
	Engineering Mathematics-III
	(Common to All Branches)
	Time: 3 Hours swer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

. a)	
. u	Determine the rank of the matrix $\begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{vmatrix}$
L)	
b)	Investigate the values of and μ so that the equations 2x+3y+5z=9; 7x+3y-2z=8; 2x+3y+ z= μ have
	(i) no solution (ii) a unique solution and (iii) an infinite number of solutions
	OR
2. a)	Find the Eigen values and eigenvectors of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$
b)	
3. a)	UNIT–II Find the missing term in the table
y. aj	x 2 3 4 5 6
	y 45 49.2 54.1 - 67.4
b)	Find the real root of the equation $x \log_{10} x = 1.2$ by Regula-falsi method correct to four
	decimal places.
	OR
ŀ.	Estimate the value of $f(22)$ and $f(42)$ from the following table by Newton's forward
	and backward interpolation formula.
	y 354 332 291 260 231 204
5.	Using Euler's Method, find an approximate value of y corresponding to $x = 1$, given
	$\frac{dy}{dx} = x + y$ and $y = 1$ when x=0.
	OR
6 .	Apply Fourth order Runge-Kutta Method to find an approximate value of y when $x = 1.2$
	in step of 0.1, given that $y' = x^2 + y^2$, $y(1) = 1.5$.
	UNIT-IV
'. a)	Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z = a x + b y + a^2 + b^2$
b)	
- /	OR
8.	Find the Fourier series expansion for $f(x) = e^x$ in $0 < x < 2f$
).	Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic everywhere.
	OR
). a)	If $u = x^2 + y^2$, find harmonic conjugate $v(x, y)$ and write the corresponding complex
<u>.</u> .	potential $f(z) = u + iv$
b)	Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial u}, \frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial u}$
	OR RO, OR RO,
