Code: 5GC31

R-15

II B.Tech. I Semester Supplementary Examinations May 2022

Engineering Mathematics-III

(Common to CE \& ME)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$
b) Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix

OR

2. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]$ and hence find A^{4}.

UNIT-II
3. a) Find the missing term in the table

x	2	3	4	5	6
y	45	49.2	54.1	-	67.4

b) Find the Cubic polynomial which takes the values. $y(0)=1, y(1)=0, y(2)=1$ and

$$
y(3)=10
$$

OR

4. a) Find the real root of the equation $x \log _{10} x=1.2$ by Regula-falsi method correct to four decimal places.
b) Using Lagrange formula find $f(4)$. Given

x	0	2	3	6
y	-4	2	14	158

UNIT-III
5. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y$, $y(0)=1$

OR

6. Apply Fourth order Runge-Kutta Method to find an approximate value of y when $x=1.2$ in step of 0.1 , given that $y^{\prime}=x^{2}+y^{2}, y(1)=1.5$.
b) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

OR

8. Using the method of separation of variables, solve
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $\mathrm{u}(x, 0)=6 e^{-3 x}$

UNIT-V

9. a) If $u=x^{2}+y^{2}$, find harmonic conjugate $v(x, y)$ and write the corresponding complex potential $f(z)=u+i v$
b) Show that the polar form of Cauchy's Riemann equations are $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}$

OR

10. Determine p such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytic function

Code: 5G531
II B.Tech. I Semester Supplementary Examinations May/June 2022

Mechanics of Solids

(Mechanical Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Define the term 'composite bar'. How will you find the stresses and load carried by each member of a composite bar?
b) A steel rod 20 mm in diameter passes centrally through a steel tube of 25 mm internal
diameter and 30 mm external diameter. The tube is 800 m long and is closed by rigid members of negligible thickness which are fastened by nut threaded on the rod. The nuts are tightened until the compressive load on the tube is 20 KN . Calculate the stresses in the tube and the rod.

OR

2. a) A steel cube of 30 mm external diameter and 20 mm internal diameter encloses a copper rod of 15 mm diameter to which it is rigidily joined at each ends. If at a temperature of $10^{\circ} \mathrm{C}$ there is no longitudinal stress. Calculate the stress in the rod and tube when the temperature is raised to 200°. Take $\mathrm{Ec}=1 \times 10^{5} \mathrm{Mpa}, \mathrm{Es}=2.1 \times 10^{5} \mathrm{Mpa}$, the value of coefficient of linear expansion for steel $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and for copper $18 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively.

UNIT-II

3. a) What are the different types of beams?
b) Draw the shear force and B.M diagram for a simply supported beam of length 8 m and carrying a uniformly distributed load of $12 \mathrm{KN} / \mathrm{m}$ for a distance of 4 m from the left end. Also calculate the maximum B.M on the section.

OR

4. a) Define point of contra flexure.
b) Draw the Shear force and bending moment diagram for the loaded beam as shown in Figure

UNIT-III

5. A cast iron beam is of T- section as shown in Fig. The beam is simply supported on a span of 10 m . The beam carries a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ length on the entire span. Determine the maximum tensile and maximum compressive stresses.

OR

6. Figure shows a section, which is subjected to a shear force of 80 kN . Determine the shear stresses at A, B, C and D. Sketch shear stress distribution also.

7. a) Derive an expression for slope and deflection at free end of a cantilever beam subjected to UDL over entire span.
b) A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a UDL of $9 \mathrm{kN} / \mathrm{m}$ over the entire span of 5 m . If the value of E for the beam material id $1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$., find
i) The slope at support ends and
(ii) maximum deflection

OR

8. A cantilever of 2 m length carries a uniformly varying load of $20 \mathrm{kN} / \mathrm{m}$ at the free end to $70 \mathrm{kN} / \mathrm{m}$ at the fixed end. If young's modulus is $1 \times 10^{5} \mathrm{MPa}$ and moment of inertia is 10^{8} mm^{4}, determine the slope and deflection of the cantilever at the free end.

UNIT-V

9. a) Derive the crippling load for a column with one end fixed and the other end free.
b) A hollow mild steel tube of 6 m long 4 cm internal diameter and 6 mm thick is used as a Sturt with both ends hinged, Find the cripping load and safe load taking factor of safety as 3. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

OR

10. Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.

Code: 5G533

II B.Tech. I Semester Supplementary Examinations May/June 2022 Basic Thermodynamics

(Mechanical Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Derive the general steady flow energy equation and deduce SFEE for Turbine.
b) A mass of 8 kg gas expands within a flexible container so that the $\mathrm{p}-\mathrm{v}$ relationship is of the form $\mathrm{pv}^{1.2}=$ constant. The initial pressure is 1000 kPa and the initial volume is $1 \mathrm{~m}^{3}$. The final pressure is 5 kPa . If specific internal energy of the gas decreases by $40 \mathrm{~kJ} / \mathrm{kg}$, find the heat transfer in magnitude and direction.

OR

2. a) Classify the types of thermodynamic systems with the help of suitable example.
b) Identify the differences between open system and closed system in thermodynamics.

UNIT-II

3. a) Discuss about the limitations of First law of Thermodynamics
b) State Carnot theorem.

OR

4. A reversible heat engine operates between two reservoirs a temperature of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between the reservoirs at temperatures of $40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. the heat transfer to the heat engine is 2000 KJ and the network output for the combined engine refrigerator is 30 KJ . Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$.

UNIT-III

5. a) A sample of steam from a boiler drum at 3 MPa is put through a throttling calorimeter in which the pressure and temperature are found to be $0.1 \mathrm{Mpa}, 120^{\circ} \mathrm{C}$. Find the quality of the sample taken from the boiler.
b) Describe with a neat sketch a separating calorimeter for measuring the dryness fraction of steam.

OR

6. A vessel having a capacity of $0.05 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. the mass of the liquid present is 10 kg . Calculate the pressure, mass, specific volume, specific enthalpy, specific entropy, and specific internal energy.

UNIT-IV

7. a) Derive the relationship between the two principal specific heats and characteristic gas constant for a perfect gas
b) Deduce the equation PV = Constant for an adiabatic process

OR
8. A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $5^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.

UNIT-V

9. a) Write about average molar mass of the gas mixture
b) State Avogadro's law of Additive volumes.

OR
10. A Vessel of $5 \mathrm{~m}^{3}$ capacity contains two gases A and B in proportion of 40% and 60% respectively at $25^{\circ} \mathrm{C}$. If the value of R for the gases is $0.288 \mathrm{kj} / \mathrm{kgK}$ and $0.295 \mathrm{kj} / \mathrm{kgK}$ and if the total weight of the mixture is 2 kg calculate (i) partial pressure (ii) total pressure (iii) the mean value of gas constant for the mixture.

