		Hall Ticket Number :												г			
	6	Code: 5G533				<u> </u>					<u> </u>					R-15	
		II B.Tech. I Se	eme	ester	Sup	ople	mei	ntar	/ Ex	ami	nati	ons	Αu	gus	st 20:	21	
				B	asi	c Th	ern	nody	yna	mic	S			0			
				(Me	char	nica	l Eng	inee	ering)						
	-	Nax. Marks: 70	1 -		مام	:-								ц <i>г</i> .		ne: 3 H	
	/	Answer any five full qu	esno	d and	y ch	OOSI	<u> </u>	1e qu *****	Jesho		Sme	ach	Un	1 (5)	x14 =	= 70 MC	irks j
							UNI	T—I									
1.	a)	Classify the types of the	ermoc	lynan	nic sy	stem	s witl	n the l	help	of sui	table	exar	nple).			7M
	b)	Identify the differences	betwe	een o	pen s	syster	n and O f		ed sy	vstem	in th	ermo	odyn	amic	s.		7M
2.	a)	A mass of gas is comp	resse	d in a	a qua	asi-sta	-		s froi	m 80	KPa.	0.1m	n ³ to	0.4	MPa.	0.03m ³	3
	u)	Assuming that pressure															
		during the process. Ider	ntify v	vheth	er it a	a wor	k pro	ducing	g sys	tem o	or wo	rk ab	sork	oing s	syster	n.	
	b)	Differentiate between l examples.	Reve	rsible	proc	cess	and	Irreve	rsible	e Pro	cess	with	the	e he	lp of	suitable	e 6M
							UNI	Г—II									
3.	a)	Determine the expressi	on fo	r the	meas	surem	ent c	of perf	orma	ince f	for re	versil	ble l	neat	engin	ies, hea	
		pump and refrigerators.															10M
	b)	State Carnot theorem.					OF	5									4M
4.	a)	Derive Maxwell relation	s and	dedu	uce tv	vo "T	-		ons								10M
	b)	Define the following Ter															4M
	,						UNIT	-111									
5.	a)	Write about the Mollier	Chart	and	its us	e.											7M
	b)	Draw and explain P-V d	liagra	m for	pure	subs											7M
0	-)	Drow a nact alkatah a	fthr			- rim- o	IO Ior		(nloim		u da		fro	ation	of a	toom i	_
6.	a)	Draw a neat sketch o determined.	i thro	ottiing		onme	ter a	na ex	kpiair		v ary	ness	Tra	Ction	OFS	steam is	s 7M
	b)	Find the internal energy				•						•					2 1 / 1
		(i) its quality is 80 % (ii)	It is c	iry sa	turat	È) Sup UNIT			ne ae	egree	OTSU	lpei	neat	being	g 65 ℃.	
7.	a)	0.3 m ³ of air at pressu	re 8 l	oar e	xpan	L			」 ne fin	al pre	essur	e is '	1.3	bar. /	Assur	mina the	ə 7M
		expansion to be polytro =1.4														•	
	b)	Derive the expressions	for he	eat tra	ansfe	r and	work	done	e duri	ng a	rever	sible	isot	herm	hal pro	ocess.	7M
	2)						OF			5				-			
8.	a)	One kg of CO_2 has a															
		equation b) Perfect gas b=0.0423 m ³ /(kg-mol).	equa	ation	The	Vand	er W	aal's (const	ants	a = 3	36285	50 N	lm⁴ /	(kg-m	nol) ² and	1
	b)	List out the assumption	s mao	de in t	the ic	leal g	as eo	quatio	n.								4M
								V									
9.	a)	State Dalton's law of ad	ditive	pres	sure	and /	Amag	jaťs la	aw of	addi	tive v	olum	es				6M
	b)	Explain Mass fraction .M	/lole f	ractio	on, In	terna		•••	nd sp	pecifi	c hea	t of g	as r	nixtu	res		8M
10.		A gas mixture consists	of 0	1ka o	f.corl	10n n			nd 1	1 60	ofor	arhon	dia	vida	Calo	ulata th	2
10.		mass fraction, mole frac		-										NUC	Jaill		້ 14M
		,	,				-	**									

Hall Ticket Number :				
----------------------	--	--	--	--

Code: 5GC31

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to CE & ME)

Time: 3 Hours

R-15

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Find the values of for which the equations

(-1)x+(3+1)y+2z=0; (-1)x+(4-2)y+(+3)z=0; 2x+(3+1)y+3(-1)z=0 are consistent and find the ratios of x:y:z when has the smallest of these values. What happens when has the greatest of these values?

- 2. Find the characteristic of the matrix A= $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and hence find its inverse **UNIT-II**
- 3. a) Find a real root of the equation x³-2x-5=0 by the method of false position correct to three decimal places.
 - b) Find the cubic polynomial which takes the following values:

Х	0	1	2	3				
f(x)	1	2	1	10				
OR								

4. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule.

UNIT-III

5. Employ Taylor's method to obtain approximate value of y at x=0.2 for the differential equation $dy/dx=2y+3e^x$, y(0)=0.Compare the numerical solution obtained with the exact solution.

6. Using Runge-Kutta method of order 4, find y for x=0.1,0.2,0.3 given that $dy/dx=xy+y^2$, y(0)=1.Continue the solution at x=0.4 using Milne's method.

UNIT–IV

OR

7. Obtain the Fourier series for f(x) = x in the interval -f < x < f

OR

8. Find the half range sine and cosine series of f(x) = x in 0 < x < 2

UNIT-V

OR

9. Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\left(\frac{px}{y}\right)$ be an analytic function

function

10. Evaluate $\int_{c} \frac{e^{z}}{(z^{2}+f^{2})^{2}} dz$ where c is |z|=4

		Hall Ticket Number :
	C	Code: 5G532
		II B.Tech. I Semester Supplementary Examinations August 2021
		Metallurgy and Material Science
		(Mechanical Engineering)
		Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark
	,	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks ********
		UNIT-I
1.	a)	Define alloy. Explain its necessity.
	b)	Discuss about Schottky defect and Frankel defect.
_		OR
2.		Classify bonds and explain them with examples
0		UNIT-II Drow a past skotch of Iron Iron Carbida (Es Es C) diagram and label all important points
3.		Draw a neat sketch of Iron-Iron Carbide (Fe-Fe ₃ C) diagram and label all important points, lines and phases in it.
		OR
4.	a)	Classify Equilibrium diagrams
	b)	Define Liquidus line, Solidus line and Solvus line.
	,	UNIT–III
5.	a)	What do you understand by Season cracking and how it can be prevented
	b)	What is dezincification? How it can be minimized
		OR
6.		Explain the Composition, microstructure, properties and applications of
		(i) White cast iron(ii) Spheroidal Graphite cast Iron
		UNIT-IV
7.	a)	What is Surface treatment? Mention its characteristics
	b)	Briefly explain Sheradising process.
	,	OR
8.		Elaborate the diffusion and mechanical coating process
•		
9.		Explain any two methods of manufacture of composites
		OR Describe the basic steps in powder metallurgy process
10.		DESCHIDE THE DASIC STEPS IN POWART MELANALAY PLOCESS

10. Describe the basic steps in powder metallurgy process

		Hall Ticket Number :	
	C	Code: 5G531	
		II B.Tech. I Semester Supplementary Examinations August 2021	
		Mechanics of Solids	
		(Mechanical Engineering) Max. Marks: 70 Time: 3 Hou	Irc
		Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark ********	
		UNIT-I	
1.	a)	Draw the stress-strain diagram of mild steel specimen subjected to tensile test and explain the salient points.	7M
	b)	An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN elongates 0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm. Calculate the modulus of elasticity and the poisson's ratio of the material. OR	7M
2.	a)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses	7M
	b)	Prove that the maximum stress induced in a body due to suddenly applied load is twice the stress induced when the same load is applied gradually.	7M
3.		A beam ABC 8 m long has the support at the end A and other support at B 6 m from A. It carries a uniformly distributed load of 6 kN/m over the entire length and a point load of 10kN at the end C. Draw the shear force and bending moment diagrams OR	14M
4.		A simple supported beam of length 8m rests on supports 6m apart, the right hand end is overhanging by 2 m. The beam carries a uniformly distributed load of 1500 N/m over the entire length. Draw the shear force and bending moment diagrams and find the point of contra flexure, if any?	14M
5.	a)	Prove that for a rectangular section the maximum shear stress is 1.5times the average stress. Sketch the variation of shear stress.	7M
	b)	Circular beam of 100mm diameter is subjected to a shear force of 10 KN. Calculate i. Average shear stress. ii. Maximum shear stress.	
		Also sketch the variation of the shear stress along the depth of the beam. OR	7M
6.	a)	Derive the section modules for a hollow rectangular section	4M
	b)	A beam is simply supported and carries a U.D.L of 40kN/m run over the whole span. The section of the beam is rectangular having depth as500mm. If the maximum stress in the material of the beam is $120N/mm^2$ and moment of inertia of the section is $7 \times 10^8 \text{ mm}^4$, find the span of the beam.	10M
		UNIT–IV	
7.	a)	Derive the relationship between slope, deflection and radius of Curvature of a simply supported beam.	7M
	b)	A beam of 6 meter long simply supported at its ends, carries a point load 'W' at its centre. If the slope at the ends of the beam is not to exceed 1°, find the maximum deflection. OR	7M
8.		A beam ABC of length 10 m has one support at the left end and the other support at a distance of 6 m from the left end. The beam carries a point load of 1 kN at right end and also carries a UDL of 3 kN/m over a length of 4 m from right end 'C'. Determine the slope and deflection at point 'C'. Take E= 2 X 10^5 N/mm ² and I = 5 X 10^8 mm ⁴ .	14M
9.		UNIT-V State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations. OR	14M
10.		A compound cylinder is made by shrinking a cylinder of external diameter cylinder of 30 cm and internal diameter25cm over another cylinder of external diameter 25cm and internal diameter20cm. After shrinking the radial pressure at the common junction was 8 N/mm2. Find the final stresses set up across the section when the compound cylinder is subjected to an internal fluid pressure of 84.5 N/mm ² .	14M
		· ***	

	Hall Ticket Number :	
	Code: 5G534	
	Il B.Tech. I Semester Supplementary Examinations August 2021 Manufacturing Technology (Mechanical Engineering) Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Mark ********	
1.	UNIT–I Define the pattern? and List the types of patterns with neat sketches	14N
2.	OR Discuss the principle of Centrifugal casting processes mention its merits and demerits.	14N
3.	UNIT–II Define the term Welding? Mention classification of welding process in detail	14N
4.	OR What is Thermit welding? Explain the process. Also list any three advantages and limitations	14N
5.	UNIT-III Describe the process of stamping and forming using neat sketch	14N
6.	OR Explain about hot and cold spinning with help of neat sketches mention its applications	14N
7.	UNIT-IV Describe the basic extrusion process and its characteristics	14N
8.	OR Name and Demonstrate the process of manufacturing of Connecting rod.	14M
9.	UNIT–V Define the term polymer? Mention the properties of plastics in detail OR	14M
10.	Supreme Chairs are manufacturing by which process? Explain in detail	14M
