		Hall Ticket Number :
	(Code: 5G533 II B.Tech. I Semester Supplementary Examinations October 2020
		Basic Thermodynamics
		(Mechanical Engineering)
		Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)
1.	a)	
	b)	A gas undergoes a reversible non flow process according to the relation $P = (-3V + 15)$ where V is the volume in cubic meter and P is the pressure in bar. Determine the work done where the volume changes from 3 to 6 cubic meters.
0	-)	OR Define Zearth law of Thermonican Europein Franksis have it is hereis for the terror restored and the second
2.	a) b)	Define Zeroth law of Thermodynamics. Explain how it is basis for the temperature measurement. Define internal energy of a system and show that it is a property of the system.
	ω)	
3.	a)	What are the two statements of Second law of Thermodynamics
	b)	An engine operating on a Carnot cycle works within temperature limits of 600 K and300 K. If the engine
		receives 2000 KJ of heat evaluate the work done and thermal efficiency of the engine. OR
4.	a)	
	b)	Prove Maxwell relations.
		UNIT–III
5.	a)	What is steam quality? Develop relations for specific volume, enthalpy and internal energy for two-phase mixture.
	b)	A vessel containing 5 kg of steam at 8 bar and 250°C is cooled by pouring water over the outer surface, till the inside pressure falls to 5 bar. Calculate
		i) the final state of the steam ii) heat loss iii) loss of internal energy.
6.	a)	OR Explain about critical point of steam. Why does the fusion line for water have negative slope?
0.	b)	10 kg of water at 45°C is heated at a constant pressure of 10 bar until it becomes superheated vapour at
	,	300°C. Find the change in volume, enthalpy, internal energy and entropy.
_		UNIT-IV
7.	a)	Explain Vander wall's equation of state and derive the constants for the equation 0.2 m^3 of air et pressure 3 has expande to 1.5 m^3 . The final pressure is 1.2 has . Accuming the expansion to
	b)	0.3 m ³ of air at pressure 8 bar expands to 1.5 m ³ . The final pressure is 1.3 bar. Assuming the expansion to be polytropic. Calculate the heat supplied and change of internal energy. Assume =1.4.
		OR
8.	a)	State Dalton's law of additive pressure
	b)	A gas mixture consists of 0.4 kg CO, 1.1 kg of CO_2 and 1.5 kg of N_2 . Determine
		(i) Mass fraction of each component. (ii) mole fraction of each component .(iii) average molar mass of the mixture .(iv)gas constant of the mixture.
9.	a)	Explain the four processes of the Stirling cycle with PV and TS diagrams?
	b)	A Diesel engine has a compression ratio of 14 and cut-off takes place at 6% of the stroke. Find the air
		standard efficiency?
10.	a)	OR What is an Air standard cycle? What are the assumptions for Air standard cycles?
	b)	In a constant volume cycle the temperature at the beginning and end of the compression are 43°C and 323°C respectively. Calculate the i) air standard efficiency and ii) the compression ratio. Assume =1.4 for

air.

	Ha	Il Ticket Number : R-15]
	Coc	de: 5GC31	
		II B.Tech. I Semester Supplementary Examinations October 2020	
		Engineering Mathematics-III (Common to CE & ME)	
	Mc	ax. Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
•	a)	Test for consistency and solve 5x+3y+7z=4; 3x+26y+2z=9; 7x+2y+10z=5	8M
	b)	Show that the Eigen values of diagonal matrix are just the diagonal elements of the matrix	6M
		OR	
		Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing into Echelon form	
•	a)	Find the rank of the matrix $\begin{vmatrix} 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \end{vmatrix}$ by reducing into Echelon form	
		$\begin{bmatrix} 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$	7M
	b)	Find the Eigen values and eigenvectors of $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	7M
		UNIT–II	
•	a)	Find the Cubic polynomial which takes the values. $y(0)=1$, $y(1)=0$, $y(2)=1$ and	
		y(3) = 10	7M
	b)	Using Newton-Raphson Method, compute $\sqrt{41}$ correct to four decimal places	7M
		OR § 1	
		Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ by using	
		Trapezoidal rule (ii) Simpson's 1/ 3 rule (iii) Simpson's 3/ 8 rule.	14M
		Using Euler's Method, find an approximate value of y corresponding to $x = 1$, given dy	
		$\frac{dy}{dx} = x + y$ and $y = 1$ when x=0.	14M
		OR	
		Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y' = x + y$, $y(0) = 1$	14M
		$\begin{array}{c} \textbf{UNIT-IV} \\ \hline \end{array}$	
		Find the half range sine and cosine series of $f(x) = x$ in $0 < x < 2$ OR	14M
	a)	Find the Fourier series expansion for $f(x) = e^x$ in $0 < x < 2f$	1014
) b)	Form the partial differential equations (by eliminating the arbitrary constants and arbitrary	10M
	2)	functions) from $z = a x + b y + a^2 + b^2$	4M
		UNIT-V	
	a)	Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic everywhere.	7M
	b)	Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} dz$ with C: $ z = 2$ using Cauchy's Integral Formula	
			7M
		OR $(2 - 2) + (2 - 2) +$	
		Determine p such that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + i\tan^{-1}\left(\frac{px}{y}\right)$ be an analytic	
		function ***	14M

Time: 4 Hours 2 X 10 = 20M

PART-A

Answer the following two questions each carries 10 marks

- 1. a) Sketch the following thread profiles for a nominal diameter of 25mm and pitch 3mm and give their applications:
 - (i) Buttress thread
 - (ii) Square thread
 - b) Draw a hexagonal nut for a Major diameter bolt is 25 mm.

OR

- 2. Draw Sectional front and top view of double riveted single strap chain butt joint with diameter as 15mm?
- 3. Draw front and side view of hexagonal headed bolt of nominal diameter 25 mm and a length of 100 mm with a hexagonal nut and washer?

OR

4. Draw Sectional front view and side view of Half-Lap muff coupling using shaft diameter as 30 mm?

Hall Ticket Number :

Code: 5G535

II B.Tech. I Semester Supplementary Examinations October 2020

Machine Drawing

(Mechanical Engineering)

Max. Marks: 70

)20

R-15

Part-B

- Answer any one of the following carries 25 marks1 X 25 = 25M5. Assemble all the parts of the stuffing box, shown in below figure and draw the following views:
 - (a) Half sectional view from the front
 - (b) View from above.

OR

- 6. Assemble all the parts of the screw jack, shown in below figure and draw the following views:
 - a) Half sectional view from the front
 - b) View from above.

ψ140

Part No.	Name	Mati	Qty
1	Body	CI	1
2	Nut	GM	1
3	Screw	MS	1
4	Cup	CS	1
5	Washer	MS	1
6	Screw	MS	1
7	Tommy bar	MS	1

Screw jack

1 X 25 = 25M

Part-C Answer any one of the following carries 25 marks

7. Prepare the part drawings of the Tool post.

Part No.	Name	Mat.	City.
1	Body	MS	1
2	Clamp screw	MC8	12
3	Wedge	CI	- 1 C
4	Fing	MS	12
5	Square block	MS	18

OR

8. Prepare the part drawings of the plumber block

L	<u> </u>	le: 5G532	
		II B.Tech. I Semester Supplementary Examinations October 2020	•
		Metallurgy and Material Science	
		(Mechanical Engineering)	
	Mc	ix. Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	
		UNIT–I	
		List the various types of bonds occurring in a crystal. Discuss the metallic bond and its	
		characteristics	14
,	2)	OR What is the necessity of alloying?	-
2.	a)		-
	b)	Write a note on intermediate phases.	-
3.		What are peritectic reactions? And explain the equilibrium diagrams with neat sketch.	14
		OR	
ŀ.		Explain phase rule, Lever rule and composition rule.	14
_			
5.		Explain the microstructure, properties and applications of Grey Cast Iron.	14
		OR	
5.	a)	Explain season cracking in brasses and how it can be prevented?	7
	b)	What is dezincification? How it may be minimized?	-
		UNIT-IV	
	a)	State the objectives of annealing.	7
	b)	What is age hardening treatment?	-
		OR	
3.		Describe the steps in construction of TTT diagram with an example	14
		UNIT-V	
).		Define composites and classify them. Explain any two methods of production of composites.	14
		OR	
).		Explain Open Hearth process of steel making with neat sketch. List out its advantages and	
		disadvantages.	14

	Hall	Ticket Number :	
(Code	e: 5G531	5
		II B.Tech. I Semester Supplementary Examinations October 2020	
		Mechanics of Solids	
	M	(Mechanical Engineering) ax. Marks: 70 Time: 3	Hours
	1010	Answer all five units by choosing one question from each unit (5 x 14 = 70 Mark ********	
		UNIT–I	
1.	a)	Explain stress strain diagram for mild steel specimen for tensile test in detail?	7M
	b)	Find the modulus of elasticity for a rod which tapers uniformly from 30mm to 15m length of 350 mm .The rod is subjected to an axial load of 5.5kN and extension of the 0.025mm	
		OR	
2.		A tensile test was conducted on a mild steel bar .The following data was obtained fr test i) diameter of the steel bar =3 cm ii) gauge length of the bar =20cm iii) load a elastic limit =250 kN iv) extension at a load of 150 kN is 0.21 mm V) Ma load=380KN .vi)Total extension =60 mm. viii) diameter of the rod at the failure =2. determine the i) young's modulus ii) stress at elastic limit iii) percentage elo	t which aximum 25 cm. ngation
		iv)percentage decrease in area .	14M
3.	a)	UNIT–II Define shear force, bending moment & point of contra flexure.	7M
0.	b)	Draw shear force diagram and bending moment diagram for a simply supported b	
		length 9m carrying a uniformly distributing load of 10KN/m for a distance of 6m from end. Also calculate the maximum bending moment on the section.	
		OR	
4.		Draw shear force and bending moment diagram for a simply supported beam of len and carrying a UDL of 10KN/m for a distance of 6m from the left end .Also car maximum bending on the section	-
5.	a)	State the assumptions made in the theory of simple bending and derive the b equation?	ending 7M
	b)	A rectangular beam 100mm wide and 250mm deep is subjected to a maximum shear of 50KN.determine i) Average shear stress ii) maximum shear stress and iii) shear at a distance 25 mm above the netural axis	ar force
		OR	
6.		An I section beam 350 mm x 150 mm has a web thickness of 10 mm and a thickness of 20mm .If the shear force acting on the section is 40 KN ,fin maximum shear stress developed in the I section? Sketch the shear distribution across the section.	nd the
7.		UNIT-IV Derive an expression for max deflections for a simply supported beam subjected to I	
7.		double integration method.	14M
		OR	
8.		A hollow circular shaft 200 mm external diameter and thickness of metal 25 transmitting power at 200 rpm. The angle of twist over a length of 2 m was found to degrees. Calculate the power transmitted and the maximum shear stress induced section. Take modulus of rigidity of material as 84 kN/mm ² .	be 0.5
9.		A thin cylindrical shell, 2m long has 200 mm diameter and thickness of metal 10 m filled completely with fluid at atmospheric pressure. If an additional 25000 mm ³ pumped in, find the pressure developed and hoop stress developed. Find also the c in diameter and length. Take E=2 X10 ⁵ N/mm ² and μ =0.3.	fluid is
10.		A hollow cast from iron whose outside diameter is 200 mm and has a thickness of 20) mm is
IU.		4.5 m long and is fixed at both ends. Calculate the safe load by Rankine's formulae factor of safety of 2.5.Find the ratio of Euler's to Rankine's loads. Take $E=1X10^5$ N/m Rankines constant=1/1600 for both ends pinned case and $f_c=550$ N/mm ² .	using a

٦.

Page 1 of 1

e: 5G534 II B.Tech. I Semester Supplementary Examinations October 2020 Manufacturing Technology (Mechanical Engineering) x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm in diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT-II What are the various types of welded joints with sketch? Explain the following with neat sketches
Manufacturing Technology (Mechanical Engineering) Marks: 70 Time: 3 Hour Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ************************************
(Mechanical Engineering) x. Marks: 70 Time: 3 Hour Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm i diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT-II What are the various types of welded joints with sketch?
x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks) ********* UNIT-I Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm i diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT-II What are the various types of welded joints with sketch?
******* UNIT-I Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm i diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT-II What are the various types of welded joints with sketch?
Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm i diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
Calculate the ratio of solidification times of two steel cylindrical risers of sizes 36cm i diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
diameter by 72 cm height and 72cm in diameter by 36 cm in height subjected to identical conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
conditions of cooling. OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
OR What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
What is a Pattern? Explain the various pattern allowances provided on the pattern? Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
Define the terms (i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
(i) Chaplets (ii) Chills (iii) Core (iv) Casting UNIT–II What are the various types of welded joints with sketch?
What are the various types of welded joints with sketch?
What are the various types of welded joints with sketch?
(i) Arc Welding (ii) Gas welding (iii) Forge welding
OR
Compare the following
(i) Brazing and Welding
(ii) Tungsten Inert gas Welding & Metal Inert gas Welding
UNIT–III
Compare hot working & cold working. State few products made for each of the processes.
Explain hot and cold spinning
OR
Describe two high, four high roll mills.
Describe bending & forming operation.
UNIT-IV
Discuss the forward and backward extrusion process and their advantages, applications of
process.
Write short notes on (i) Impact Extrusion (ii) Hydrostatic Extrusion
OR
Describe coining and embossing process of forming.
Describe few defects of rolled products and state their remedies
UNIT–V
Classify plastics. And state their applications.
Describe compression moulding process and state its applications.
OR
Describe injection moulding process and state its applications.
Describe blow moulding process and state its applications.