	Hal	I Ticket Number :							
C	Cod	le: 5G531							
		II B.Tech. I Semester Supplementary Examinations November 2023 Mechanics of Solids (Mechanical Engineering)							
Max. Marks: 70 Time: 3 Ho									
		UNIT-I	Mai						
1.	a)	Explain various types of stresses and strains.	7						
	b)	An aluminium bar 60mm diameter when subjected to an axial tensile load 100KN							
		elongates 0.20mm in a gauge length 300mm and the diameter is decreased by 0.012mm. Calculate the modulus of elasticity and the poisson's ratio of the material. OR							
2.	a)	Derive the relationship between young's modulus, modulus of rigidity and bulk modulus.	7						
	b)	Draw Mohr's circle when the component is subjected to mutually perpendicular tensile							
		stresses.	7						
3.	a)	UNIT-II What are the different types of beams?	5						
0.	b)	A cantilever of length 2 m carries a of 1 kN/m run over a length of 1.5 m from the free							
	,	end. Draw the shear force and bending moment diagrams for the cantilever. OR							
4.		Define point of contra flexure.	3						
1. 1. 2. 3. 4. 5. 6. 7.	b)	Draw the shear force and B.M diagram for a simply supported beam of length 8m and carrying a uniformly distributed load of 12KN/m for a distance of 4m from the left end. Also calculate the maximum B.M on the section.	1						
5	UNIT–III 5. a) Prove that for a rectangular section the maximum shear stress is 1.5times the average								
0.	b) Derive the section modules for (a) rectangular section and (b) circular section								
		OR							
6.	a) b)	Derive the section modules for a hollow rectangular section A timber beam 120m wide and 185mm deep supports a u.d.l of intensity w KN/m length	4						
1	0)	over a span of 2.7m. If the safe stresses are 29Mpa in bending and 3Mpa in shear, calculate the safe intensity of the load which can be supported by the beam.	1(
7.	a)	Derive an expression for slope and deflection at free end of a cantilever beam subjected							
		to UDL over entire span.	7						
	b)	Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load OR	-						
8.		A rectangular reinforced concrete simply supported beam of length 2 m and cross section							
		100 mm x 200 mm is carrying an uniformly distributed load of 10 kN/m through its span. Find the maximum slope and deflection. Take $E=2 \times 10^4 \text{ N/mm}^2$.	14						
9.		State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.	14						
		OR							
10.		Determine the maximum and minimum hoop stress across the section of a pipe of 400mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of 8N/mm ² . Also sketch the radial pressure distribution and hoop stress distribution across the section.	14						

	<u> </u>	R-15							
C		ll B.Tech. I Semester Supplementary Examinations November 2023	_						
		Basic Thermodynamics							
		(Mechanical Engineering)							
	Mc	ax. Marks: 70 Time: 3 Hours	5						
	Ans	swer any five full questions by choosing one question from each unit (5x14 = 70 Marks))						
		*****	Ма						
		UNIT–I							
1.	a) What is meant by displacement work? Explain the same with reference to the Quasi-static								
	b)	process.							
	 b) Classify the types of thermodynamic systems with the help of suitable example. OR 								
2.	a)	Prove that Internal energy is a property of the system.	6						
	b)	A mass of gas is compressed in a quasi-static process from 80KPa, 0.1m ³ to 0.4 MPa,							
		$0.03m^3$. Assuming that pressure and volume are related by PV ⁿ = constant. Find the work							
		interaction during the process. Identify whether it a work producing system or work							
		absorbing system.	8						
2	2)	UNIT-II Write short notes on Second law of Thermodynamics.	-						
3.	a) b)	Bring out the concept of entropy and importance of T-s diagram.	7 7						
	5)	OR	'						
4.	a)	Calculate the entropy change of the universe as a result of the following processes:							
		i) A copper block of 750 g mass and with Cp of 150 J/kg K at 100°C is placed in a lake at 9°C.							
		ii) The same block at 9°C is dropped from a height of 100 m into the lake.	14						
		iii) Two such blocks at 100 and 0°C are joined together.	-1						
5.	a)	Explain the concept of Triple point.	7						
0.	b)	Draw and explain P-T diagram for pure substance	7						
	,	OR							
6.	a)	Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when							
		(i) its quality is 80% (ii) it is dry saturated (iii) Superheated the degree of superheat being 65 °C.	14						
-	-)								
7.	a) b)	Explain Throttling process and Free expansion process. A spherical shaped balloon of 10 m diameter contains hydrogen at 33 °C and 1.3 bar. Find	10						
	D)	the mass of hydrogen in the balloon.	4						
		OR							
8.	a)	A constant volume chamber of 0.3 m ³ capacity contains 2 kg of this gas at 5 ^o C. Heat is							
		transferred to the gas until the temperature is100°C. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.	10						
	ь)	Write a short note on compressibility factor.							
	b)	UNIT-V	4						
9.	a)	Write a short note on the Gravimetric Analysis.	6						
0.	b)	Explain Mass fraction .Mole fraction, Internal energy and specific heat of gas mixtures	8						
	,	OR	5						
0.	a)	A Vessel of 5 m^3 capacity contains two gases A and B in proportion of 40% and 60%							
		respectively at 25°C .If the value of R for the gases is 0.288 kj/kgK and 0.295kj/kgK and if							
		the total weight of the mixture is 2 kg calculate (i) partial pressure (ii) total pressure (iii) the mean value of gas constant for the mixture.	14						

Important Note: 1. On completing your answers. Compulsorily draw diagonal cross line on the remaining blank pages. 2. Any revealing of identification, anneal to evaluator and/or equations written eq. 32+8-40, will be treated as

	Hall	Ticket Nu	umber :							R-15	7
(Code	e: 5GC31								K-15	
		II B.Tec	ch. I Ser							vember 2023	
				Er	•	-		ematic	S-111		
	May	. Marks:	70		(Coi	nmo	n to C	E & ME)		Time: 3 Hours	
	-			Jestions	by cho	osing	one qu	Jestion fro	om each u	unit (5x14 = 70 Marks)	

							NIT–I				
1.	a)	Find the	Eigen va	alues an	nd eigenv	vector	s of A	$= \begin{vmatrix} 5 & 4 \\ 1 & 2 \end{vmatrix}$			7N
	b)	Test for	consister	ncy and	solve 5	x+3y+	7z=4; 3	 3x+26y+2	z=9; 7x+2y	/+10z=5	7N
	,					2	OR	2			
								∏ 1	1 2]		
2.	a)	Verify Ca	ayley-Ha	milton tl	heorem	for the	e matrix	A = 3	1 1 an	d hence find A ⁴ .	
								3	3 1		7N
	b)	Investiga	ate the va	alues of	and µ	so tha	at the e	quations			
	,	2x+3	y+5z=9;	7x+3y-2	2z=8; 2	x+3y+	z=µ				
		have (i)	no solutio	on (ii) a	unique s	solutic	on and	(iii) an infi	nite numbe	er of solutions	7N
						U	NIT–II				
3.	a)	Find a re	oot of the	e equati	ion x^2 -	-4x -	-9 = 0	using bis	section me	thod correct to three	
		decimal	•								8M
	b)	Find the	Ū								
		X	2	3	4	5	6				
		У	45	49.2	54.1	-	67	.4			6N
							OR				
4.		From the	e followin	g table	of value	s of 'x	' and 'y	', obtain	$\frac{dy}{dx}$ and $\frac{d^2}{dx}$	$\frac{y}{2}$ at x=1.5	
		Х	1.5	2.0	2.5		3.0	3.5	4.0		
		y y	3.375	7.0	13.6		24.0	38.875	59.0		14N
		5					NIT-III				
5.		Using E	uler's Me	ethod, f	ind an a			value of	y correspo	onding to $x = 1$, given	
		,									
		dx = x + dx	y and y	- 1 WHO							14N
							OR				
6.		Use Rur	nge-Kutta	metho	d to eval	uate	y(0.1)a	and $y(0.2)$	c)given that	t y' = x + y, y(0) = 1	14N
						U	VI—IV				
	、	— : 1.4					-	•			
7.	a)	Find the	Fourier s	series e	xpansio	n for j	f(x) = c	e^x in $0 < z$	x < 2f		10Iv
7.	a) b)						. ,			itrary constants and	10N

OR

14M

8. Form the partial differential equation by eliminating arbitrary function from $F(x+y+z, x^2+y^2+z^2) = 0$

9. a) Apply C-R conditions to $f(z) = z^2$ and show that the function is analytic everywhere. 7M

b) Evaluate
$$\int_{c} \frac{1}{(z-1)(z-3)} dz$$
 with C: $|z| = 2$ using Cauchy's Integral Formula 7M

OR

10. a) Show that
$$u = \frac{1}{2} \log(x^2 + y^2)$$
 is harmonic and find its harmonic conjugate function 7M

b) Evaluate
$$\int_{c} \frac{\sin f z^{2} + \cos f z^{2}}{(z-1)(z-2)} dz$$
 with C: $|z| = 3$ using Cauchy's Integral Formula 7M