II B.Tech. I Semester Supplementary Examinations November 2023

Mechanics of Solids

(Mechanical Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)
b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100 KN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the modulus of elasticity and the poisson's ratio of the material.
2. a) Derive the relationship between young's modulus, modulus of rigidity and bulk modulus.
b) Draw Mohr's circle when the component is subjected to mutually perpendicular tensile stresses.

UNIT-II

3. a) What are the different types of beams?
b) A cantilever of length 2 m carries a of $1 \mathrm{kN} / \mathrm{m}$ run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the cantilever.

OR

4. a) Define point of contra flexure.
b) Draw the shear force and B.M diagram for a simply supported beam of length 8 m and carrying a uniformly distributed load of $12 \mathrm{KN} / \mathrm{m}$ for a distance of 4 m from the left end. Also calculate the maximum B.M on the section.

UNIT-III

5. a) Prove that for a rectangular section the maximum shear stress is 1.5 times the average stress. Sketch the variation of shear stress.
b) Derive the section modules for (a) rectangular section and (b) circular section 6M

OR
6. a) Derive the section modules for a hollow rectangular section
b) A timber beam 120 m wide and 185 mm deep supports a u.d.l of intensity $\mathrm{w} \mathrm{KN} / \mathrm{m}$ length
over a span of 2.7 m . If the safe stresses are 29 Mpa in bending and 3 Mpa in shear,
calculate the safe intensity of the load which can be supported by the beam. 10 M

UNIT-IV

7. a) Derive an expression for slope and deflection at free end of a cantilever beam subjected to UDL over entire span.
b) Define Macaulay's method? And find out Deflection of a simply supported beam with an Eccentric point load

OR

8. A rectangular reinforced concrete simply supported beam of length 2 m and cross section $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ is carrying an uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ through its span. Find the maximum slope and deflection. Take $\mathrm{E}=2 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$.

UNIT-V

9. State and explain Lame's theory for thick cylindrical shells. Derive the Lame's equations.

OR

10. Determine the maximum and minimum hoop stress across the section of a pipe of 400 mm internal diameter and 100 mm thick, when the pipe contains a fluid at a pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$. Also sketch the radial pressure distribution and hoop stress distribution across the section.

Hall Ticket Number:
Code: 5G533
II B.Tech. I Semester Supplementary Examinations November 2023
Basic Thermodynamics
(Mechanical Engineering)
Max. Marks: $70 \quad$ Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is meant by displacement work? Explain the same with reference to the Quasi-static process.
b) Classify the types of thermodynamic systems with the help of suitable example. \quad OR $\quad 7 \mathrm{M}$
2. a) Prove that Internal energy is a property of the system. 6M
b) A mass of gas is compressed in a quasi-static process from $80 \mathrm{KPa}, 0.1 \mathrm{~m}^{3}$ to 0.4 MPa , $0.03 \mathrm{~m}^{3}$. Assuming that pressure and volume are related by $\mathrm{PV}^{\mathrm{n}}=$ constant. Find the work interaction during the process. Identify whether it a work producing system or work absorbing system.

UNIT-II

3. a) Write short notes on Second law of Thermodynamics.
b) Bring out the concept of entropy and importance of T-s diagram.

OR

4. a) Calculate the entropy change of the universe as a result of the following processes:
i) A copper block of 750 g mass and with Cp of $150 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $100^{\circ} \mathrm{C}$ is placed in a lake at $9^{\circ} \mathrm{C}$.
ii) The same block at $9^{\circ} \mathrm{C}$ is dropped from a height of 100 m into the lake.
iii) Two such blocks at 100 and $0^{\circ} \mathrm{C}$ are joined together.

UNIT-III

5. a) Explain the concept of Triple point.
b) Draw and explain P-T diagram for pure substance

OR
6. a) Find the internal energy and enthalpy of unit mass of steam of a pressure of 7 bar when (i) its quality is 80% (ii) it is dry saturated (iii) Superheated the degree of superheat being $65{ }^{\circ} \mathrm{C}$.

UNIT-IV

7. a) Explain Throttling process and Free expansion process.
b) A spherical shaped balloon of 10 m diameter contains hydrogen at $33^{\circ} \mathrm{C}$ and 1.3 bar. Find the mass of hydrogen in the balloon.

OR

8. a) A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 kg of this gas at $5^{\circ} \mathrm{C}$. Heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. Find the work done, the heat transferred and the changes in internal energy, enthalpy and entropy.
b) Write a short note on compressibility factor. 4 M

UNIT-V
9. a) Write a short note on the Gravimetric Analysis.
b) Explain Mass fraction .Mole fraction, Internal energy and specific heat of gas mixtures

OR

10. a) A Vessel of $5 \mathrm{~m}^{3}$ capacity contains two gases A and B in proportion of 40% and 60% respectively at $25^{\circ} \mathrm{C}$.lf the value of R for the gases is $0.288 \mathrm{kj} / \mathrm{kgK}$ and $0.295 \mathrm{kj} / \mathrm{kgK}$ and if the total weight of the mixture is 2 kg calculate (i) partial pressure (ii) total pressure (iii) the mean value of gas constant for the mixture.

Code: 5GC31

II B.Tech. I Semester Supplementary Examinations November 2023

Engineering Mathematics-III

(Common to CE \& ME)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the Eigen values and eigenvectors of $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
b) Test for consistency and solve $5 x+3 y+7 z=4 ; 3 x+26 y+2 z=9 ; 7 x+2 y+10 z=5$

OR
2. a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 3 & 3 & 1\end{array}\right]$ and hence find A^{4}.
b) Investigate the values of λ and so that the equations

$$
2 x+3 y+5 z=9 ; \quad 7 x+3 y-2 z=8 ; \quad 2 x+3 y+\lambda z=
$$

have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions

UNIT-II

3. a) Find a root of the equation $x^{2}-4 x-9=0$ using bisection method correct to three decimal places
b) Find the missing term in the table

x	2	3	4	5	6
y	45	49.2	54.1	-	67.4
OR					

4. From the following table of values of ' x ' and ' y ', obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.5$

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

UNIT-III
5. Using Euler's Method, find an approximate value of y corresponding to $x=1$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $\mathrm{x}=0$.

OR

6. Use Runge-Kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{\prime}=x+y, y(0)=1$

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=e^{x}$ in $0<x<2 \pi$
b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from $z=a x+b y+a^{2}+b^{2}$
8. Form the partial differential equation by eliminating arbitrary function from

$$
F\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0
$$

UNIT-V

9. a) Apply C-R conditions to $f(z)=z^{2}$ and show that the function is analytic everywhere.
b) Evaluate $\int_{c} \frac{1}{(z-1)(z-3)} d z$ with $\mathrm{C}:|z|=2$ using Cauchy's Integral Formula
10. a) Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its harmonic conjugate function
b) Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$ with $\mathrm{C}:|z|=3$ using Cauchy's Integral Formula
