	Car	le: 5G332										
		II B.Tech. I Semester Supplementary Examinations March 2021										
		Digital Design										
		(Electronics and Communication Engineering)										
	Max	x. Marks: 70 Time: 3 Hours										
		Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)										
4	c)	UNIT-I										
1.	a) b)											
	b)	What is the difference between 1's and 2's compliments? Give one example.										
~	、	OR .										
2.	a)	Perform a+b, a*c and c/a operations in a given data										
	L)	a=1001,b=101,c=10001										
	b)											
~												
3.		Simplify the following expression using K-map.										
		Y = AB'C + A'BC + A'B'C + A'B'C'										
	,	OR										
4.	a)	Find the DUAL of the given functions										
		i) $F = (1,3,7)$ ii) $G = (0,2,4,)$										
	ل م)											
	b)	Find the complement of the given functions F=x+yz +x(y+z)										
		G = A'BD'+ACD+B'CD+A'C'D										
5.	a)	Differences between PAL,PLA and ROM										
5.	b)	Realize given function using decoder and additional logic $f = F = (0, 2, 4, 6)$										
	5)	OR										
6.	a)	Design a circuit which generates the no of ones in a given 3-input binary data										
	b)	Construct BCD to excess-3 code converter using ROM										
	,											
7.	a)	Differences between combinational and sequential circuits										
	b)	With a neat diagrams explain the operation of Ring counter										
	,	OR										
8.		Design a circuit which generate the following sequence 0,2,4,6,7,11,13,15, and repeat using T-FFs										
		UNIT-V										
9.		With a suitable example explain the partition technique used for state reduction										
		OR										
^		Convert given Moore machine into Mealy machine										
0.		•										

_												
	Hall	Ticket Number	:]			
(Cod	e: 5GC32						R-15	>			
	II B.Tech. I Semester Supplementary Examinations March 2021											
	(Common to EEE & ECE)											
	Max. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)											
	******** UNIT–I											
1.		Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 6 & 2 & 1 \\ 6 & 1 & 2 \\ 7 & 2 & 2 \end{bmatrix}$ and find its inverse.										
	OR											
2.		Discuss for values of $\}$ and \sim the simultaneous equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \} z = \sim$ have (i) unique solution, (ii) no solution and (iii) infinite number of solutions										
3.		UNIT-II Employ Taylor's method to obtain appropriate value of y at $x = 0.2$ for the differential										
0.		Employ Taylor's method to obtain appropriate value of <i>y</i> at <i>x</i> = 0.2 for the differential equation $\frac{dx}{dy} = 2y + 3e^x$, $y(0) = 0$. Compare the numerical solution obtained with the										
		exact solution.										
		OR										
4.		Find a root of the equation $x^3 - 2x - 5 = 0$, using the Bisection method correct to three decimal places.										
5.		Find first and se	cond deriv	L	INIT–III at x=1.5 if							
-		x 1.5		2	2.5	3	3.5	4				
		У	3.375	7.000	13.625	24.000	38.875	.875 59.000				
_				<i>.</i> .	OR							
6.		Use Lagrange's values of <i>x</i> and	-		to find the v	alue of y w	when $x = 10$,if the followi	ing			
				5	6	9		11				
		x y			13	14		16				
					INIT–IV							
7.		Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from										
		(i) z = a x + b y	$+ a^{2} + b^{2}$	and (ii) z	=f(x+ay)	+g(x-ay)						
					OR							
8.	a)	Solve $(mz - ny)p + (mx - lz)q = (ly - mx)$										
	b)											
٩		Obtain the Four	ior corioc f		JNIT-V	v^2 in the in	torval [f	flHence ch	0.14			

9. Obtain the Fourier series for the function $f(x) = x - x^2$ in the interval [-f, f] Hence show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \infty = \frac{f^2}{12}$

OR

10. Find the sine and cosine transform of $f(x) = \begin{cases} \sin x, 0 < x < a \\ 0, x \ge a \end{cases}$

Hall Ticket Number :							
	J		l			J	R-15

Code: 5G333

II B.Tech. I Semester Supplementary Examinations March 2021

Signals and Systems

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Write the Classification of systems based on certain properties.
 - b) Determine whether the following signals are energy signals or power signals and calculate their energy or power

i) $x(n) = (\frac{1}{2})^n u(n)$ ii) $x(t) = \cos^2 \check{S}_0 t$

OR

2. a) Check whether the following systems are time invariant or not

i)
$$y(t) = t^2 x(t)$$
 ii) $y(t) = x(-2t)$ iii) $y(n) = x(n)$ iv) $y(n) = x^2 (n-2t)$

b) Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.

UNIT-II

3. Obtain Fourier transforms and spectrums of following signals i) $x(t) = Cos \tilde{S}_0 t$ ii) $x(t) = Sin \tilde{S}_0 t$

OR

- 4. a) Find the Fourier transform of x(t) = u(2t), where u(t) is the unit step function
 - b) Determine the Fourier Transform for double exponential pulse whose function is given by $y(t) = e^{-a|t|}u(t)$ Also draw its magnitude and phase spectra

UNIT-III

- 5. a) Find the impulse response of series RC limit. Explain the difference between causal and non-causal systems.
 - b) Explain the Filter characteristics of linear systems

OR

- 6. a) State and prove the sampling theorem for a band limited signals
 - b) Compare different types of sampling techniques

UNIT–IV

- 7. a) State and prove any four properties of Auto correlation function
 - b) Determine the auto correlation function and energy spectral density of $x(t) = e^{-at} u(t)$

OR

- 8. a) With an example explain the Graphical representation of convolution.
 - b) Prove that auto correlation function and energy/power spectral density function forms Fourier Transform pair.

UNIT–V

9. State and prove the following properties of z-transform.
i) Time shifting ii) Time reversal iii) Differentiation iv) Scaling in z-domain

OR

Find the Laplace Transform of the following:
i) t e^{-at} u(t) ii) Cos t u(t)