II B.Tech. I Semester Supplementary Examinations March 2021

## Digital Design

## ( Electronics and Communication Engineering )

Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Convert the given octal number 234.75 to Binary, Decimal and Hexadecimal form
b) What is the difference between 1's and 2's compliments? Give one example.

## OR

2. a) Perform $a+b, a * c$ and $c / a$ operations in a given data
$a=1001, b=101, c=10001$
b) With a suitable example explain associate and distribute laws in OR logic

## UNIT-II

3. Simplify the following expression using K-map.

$$
Y=A B^{\prime} C+A^{\prime} B C+A^{\prime} B^{\prime} C+A^{\prime} B^{\prime} C^{\prime}
$$

## OR

4. a) Find the DUAL of the given functions
i) $\mathrm{F}=\Pi(1,3,7)$
ii) $\mathrm{G}=\sum(0,2,4$,
b) Find the complement of the given functions
$F=x+y z+x(y+z)$
$G=A^{\prime} B D^{\prime}+A C D+B^{\prime} C D+A^{\prime} C^{\prime} D$

## UNIT-III

5. a) Differences between PAL,PLA and ROM
b) Realize given function using decoder and additional logic . $f=F=\sum(0,2,4,6)$

## OR

6. a) Design a circuit which generates the no of ones in a given 3-input binary data
b) Construct BCD to excess-3 code converter using ROM

## UNIT-IV

7. a) Differences between combinational and sequential circuits
b) With a neat diagrams explain the operation of Ring counter

OR
8. Design a circuit which generate the following sequence $0,2,4,6,7,11,13,15$, and repeat using T-FFs

## UNIT-V

9. With a suitable example explain the partition technique used for state reduction OR
10. Convert given Moore machine into Mealy machine

| PS | NS |  | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ |  |
| a | c | a | 1 |
| b | b | d | 0 |
| c | a | b | 1 |
| d | d | c | 1 |
|  |  |  |  |

$\square$

## Code: 5GC32

## R-15

|| B.Tech. I Semester Supplementary Examinations March 2021

## Mathematics Methods-III

## ( Common to EEE \& ECE )

Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )
********

## UNIT-I

1. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{lll}6 & 2 & 1 \\ 6 & 1 & 2 \\ 7 & 2 & 2\end{array}\right]$ and find its inverse.

## OR

2. Discuss for values of $\lambda$ and $\mu$ the simultaneous equations $x+y+z=6 ; x+2 y+3 z=10$; $x+2 y+\lambda z=\mu$ have (i) unique solution, (ii) no solution and (iii) infinite number of solutions

## UNIT-II

3. Employ Taylor's method to obtain appropriate value of $y$ at $x=0.2$ for the differential equation $\frac{d x}{d y}=2 y+3 e^{x}, y(0)=0$. Compare the numerical solution obtained with the exact solution.

## OR

4. Find a root of the equation $x^{3}-2 x-5=0$, using the Bisection method correct to three decimal places.

## UNIT-III

5. Find first and second derivatives of $y$ at $x=1.5$ if

| x | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 3.375 | 7.000 | 13.625 | 24.000 | 38.875 | 59.000 |

## OR

6. Use Lagrange's interpolation formula to find the value of $y$ when $x=10$, if the following values of $x$ and $y$ are given

| $x$ | 5 | 6 | 9 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 12 | 13 | 14 | 16 |

UNIT-IV
7. Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from
(i) $z=a x+b y+a^{2}+b^{2}$ and
(ii) $z=f(x+a y)+g(x-a y)$
OR
8. a) Solve $(m z-n y) p+(m x-l z) q=(l y-m x)$
b) Solve $q^{2}=z^{2} p^{2}\left(1-p^{2}\right)$

## UNIT-V

9. Obtain the Fourier series for the function $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$ Hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+---+\infty=\frac{\pi^{2}}{12}$
OR
10. Find the sine and cosine transform of $f(x)=\left\{\begin{array}{l}\sin x, 0<x<a \\ 0, x \geq a\end{array}\right.$

II B.Tech. I Semester Supplementary Examinations March 2021

## Signals and Systems

## ( Electronics and Communication Engineering )

Max. Marks: 70
Answer all five units by choosing one question from each unit ( $5 \times 14=70$ Marks )

1. a) Write the Classification of systems based on certain properties.
b) Determine whether the following signals are energy signals or power signals and calculate their energy or power
$\begin{array}{ll}\text { i) } x(n)=\left(\frac{1}{2}\right)^{n} u(n) & \text { ii) } x(t)=\cos ^{2} \omega_{0} t\end{array}$

## OR

2. a) Check whether the following systems are time invariant or not
i) $\quad y(t)=t^{2} x(t)$
ii) $y(t)=x(-2 t)$
iii) $y(n)=x(n)$
iv) $y(n)=x^{2}(n-2)$
b) Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.

## UNIT-II

3. Obtain Fourier transforms and spectrums of following signals
i) $x(t)=\operatorname{Cos} \omega_{0} t$ ii) $x(t)=\operatorname{Sin} \omega_{0} t$

## OR

4. a) Find the Fourier transform of $x(t)=u(2 t)$, where $u(t)$ is the unit step function
b) Determine the Fourier Transform for double exponential pulse whose function is given by $\mathrm{y}(\mathrm{t})=\mathrm{e}^{-\mathrm{al\mid} \mid} u(t)$ Also draw its magnitude and phase spectra

## UNIT-III

5. a) Find the impulse response of series RC limit. Explain the difference between causal and non-causal systems.
b) Explain the Filter characteristics of linear systems

OR
6. a) State and prove the sampling theorem for a band limited signals
b) Compare different types of sampling techniques

## UNIT-IV

7. a) State and prove any four properties of Auto correlation function
b) Determine the auto correlation function and energy spectral density of $x(t)=\mathrm{e}^{-\mathrm{at}} u(t)$

OR
8. a) With an example explain the Graphical representation of convolution.
b) Prove that auto correlation function and energy/power spectral density function forms Fourier Transform pair.

## UNIT-V

9. State and prove the following properties of $z$-transform.
i) Time shifting
ii) Time reversal
iii) Differentiation
iv) Scaling in z-domain OR
10. Find the Laplace Transform of the following:
i) $t e^{-a t} u(t)$
ii) $\operatorname{Cos} \omega t u(t)$
