ı	Hall ⁻	Ticket Number :
	`odo	R-15
	.oue	II B.Tech. I Semester Supplementary Examinations May 2019
		Environmental Science
		(Common to ECE & IT)
1	_	. Marks: 70 Time: 3 Hours
	F	Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) *********
		UNIT-I
1.	a)	Define Environment? What are the components of the environment?
	b)	Discuss the role of people in protecting the environment with respect to loss of biodiversity.
		OR
2.	a)	What is the necessity for the people to know about environment?
	b)	What are the causes and effects of over exploitation of natural resources?
_		UNIT-II
3.	a)	What are the effects of deforestation? Suggest some conservation measures.
	b)	What are the environmental hazards associated with mineral extraction?
	,	OR
4.	a)	Define and write a note on soil erosion and preventive measures.
	b)	Write a note on renewable and nonrenewable energy resources.
_	۵)	Write a short note on food shein and food was with examples
5.	a)	Write a pate on energy flow in the acceptators
	b)	Write a note on energy flow in the ecosystem. OR
6.	a)	Describe the various methods of ex-situ conservation of biodiversity.
0.	а) b)	What are the major threats to biodiversity?
	D)	UNIT-IV
7.	a)	Explain the various factors responsible for soil pollution.
	b)	What are the various methods of control to reduce water pollution?
	ω,	OR
8.		Write a note on causes, effects and control measures of urban solid wastes?
		UNIT-V
9.		Write a short note on
		i) Global warming
		ii) Ozone layer depletion
		iii) Acid rain
		OR
10.	a)	Write a note on population explosion and consequences.

b) Explain the family welfare programmes.

Hall Ticket Number :

R-15

Code: 5GC32

II B.Tech. I Semester Supplementary Examinations May 2019

Mathematical Methods-III

(Common to EEE & ECE)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

- 1. a) Solve the equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4 using Guass elimination method
 - b) Prove that the eigen values of a triangular matrix are just the diagonal elements of the matrix.

OR

2. a) Define Rank of a Matrix. Reduce the matrix $\begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$ to the normal form

and hence find its rank.

- b) Discuss for values of $\}$ and \sim the simultaneous equations x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \}$ $z = \sim$ have
 - (i) unique solution, (ii) no solution and (iii) infinite number of solutions

 UNIT-II
- 3. a) Using the bisection method, find a real root of the equation $\cos x = xe^x$ correct to three decimal places.
 - b) Using Modified Euler's method find an approximate value of y when x = 0.3. Given that $\frac{dx}{dy} = x + y$ and y = 1 when x = 0

OR

- 4. a) Find a real root of the equation $3 x = \cos x + 1$ by Newton-Raphson method correct to four decimal places.
 - b) Apply Runge-Kutta method to find an approximate value of y when x = 0.2 if $\frac{dx}{dy} = x + y$ given that y = 1, where x = 0.

UNIT-III

5. a) Find f(2.5) using Newton's forward formula from the following data.

х	0	1	2	3	4	5	6
f(x)	0	1	16	81	256	625	1296

b) Use Simpson's rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.

OR

6. Use Trapezoidal rule and Simpson's $\frac{1}{3}$ rule to estimate $\int_{0}^{1} \frac{1}{1+x^{2}} dx$

Code: 5GC32

UNIT-IV

7. a) Fit a straight line by the method of least squares method to the following data

х	1	2	3	4	5
у	14	27	40	55	68

b) Form the partial differential equations (by eliminating the arbitrary constants and arbitrary functions) from

(i)
$$z = a x + b y + a^2 + b^2$$
 and (ii) $z = f(x + a y) + g(x - a y)$

OR

8. Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ and $u(x,0) = 6e^{-3x}$.

UNIT-V

9. a) Find the half range cosine series for $f(x) = x^2$ in the range $0 \le x \le f$

b) Find the sine and cosine transform of $f(x) = \begin{cases} \sin x, 0 < x < a \\ 0, x \ge a \end{cases}$

OR

10. If
$$f(x) = \begin{cases} 0, -f \le x \le 0 \\ \sin x, 0 \le x \le f \end{cases}$$
, prove that $f(x) = \frac{1}{f} + \frac{\sin x}{2} + \frac{2}{f} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$ and hence

show that i)
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \infty = \frac{1}{2}$$

ii)
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots + \infty = \frac{1}{4}(f - 2)$$

Hal	l Ticl	ket Number :															
od	le: 5	G333								<u> </u>		<u></u>]		R-15		
		II B.Tech. I	Sem	este	er Su	Jpp	lem	ento	ary E	xam	nina	tion	s Ma	y 20	19		
					•			d S	•								
\/\	12 M	(E 1arks: 70	lectr	onic	cs ar	nd C	omr	nuni	icati	on E	ngin	eeri	ng)	Tir	ne: 3 Hou	ırç	
VIC		wer all five uni	ts by	cho	osin	g on	e qu ****	estio	n fro	m ec	ıch ı	ınit (5 x 14			013	
								UN	IT–I								
1.	a)	Obtain the coreach other. He all integer value	ence	prov	e tha			•	•	•	٠,				•	or	7M
	b)	Derive the ne Fourier Series		ary e	expre	ssior	n to i	repre	sent	the f	uncti	on f(t) usin	g T	rigonometr		7M
								0	R								
2.	a)											8M					
	b)	State and pro-		•	•						igna	ls us	ing gra	aphic	al approac		6M
							U	NIT-	·II								
3.	a)	Find the Four t=0.	ier tra	ansfo	orm o	of a (gate	pulse	of u	ınit he	eight	, unit	width	and	centered		7M
	b)	Determine the by y (t) = $e^{-2 t }$							•		•		whose	func	tion is give		7M
								0	R								
4.	a)	Find the Fouri A = 10V. (ii) O				٠,		igulai	puls	e witl	n per	iod 7	Γ = 8S	ec ar	nd amplitud		8M
	b)	What is aliasing	ng? E	xplai	n its	effec	t on	samp	ling.								6M
							U	NIT-	Ш								
5.	a)	What are the signal?	requi	ireme	ents	of a	syste	m to	allov	v the	disto	ortion	less t	trans	mission of		7M
	b)	What is the in	•		•				syst	ems	conn	ecte	d in pa	aralle	l? State th		7M
								0	R								
6.	a)	A stable LTI s y(t)=2 x(t) Find What is the res	d the	freq	uenc	y res	spons	se &	Impu	lse re			• .	•	• . ,	n.	8M
	b)	Find the impurproperties	ılse r	espo	nse	of se	eries	RL c	ircuit	. Wh	at is	an l	_TI sys	stem'	? Explain i		6M
							U	NIT-	IV								
7.	a)	Find the converge and $h(t) = u(t - t)$		n of	the f	follov	ving s	signa	ls us	ing g	raphi	cal a	ınalysi	s: x	$e(t) = e^{-2t} u$	` '	7M
	b)	Show that the function.	e aut	0-CO	rrelat	ion f	uncti	on a	t the	origi	n is	equa	al to th	ne er	nergy of th		7M

OR

8. a) Show that the cross correlation of f(t) with $(t - t_0)$ is equal to $f(t - t_0)$. Where $(t-t_0)$ is delayed unit impulse function. 7M

Prove that auto correlation function and energy/power spectral density function forms

Fourier Transform pair.

7M

UNIT-V

a) Find the Inverse Z transform of 9.

$$X(z) = \frac{z+2}{4z^2 - 2z + 3} |Z| < \sqrt{3/4}$$

7M

Find inverse Z-transform of

$$X(Z) = (1 - 1/3z^{-1})(1 - 1/6z^{-1}) ROC: |Z| > 1/3$$

7M

OR

a) Determine the inverse Laplace of the following functions 10

i)
$$1/s(s+1)(s+3)$$

$$ii) 3s^2 + 8s + 6/(s+8)(s^2+6s+1)$$

8M

b) Find out the Laplace transform of the signal shown in below figure.

6M

Code: 5G332

UNIT-IV

7. a) Draw the logic circuit of SR Flip-Flop and explain its operation with the help of its truth table 6M b) Draw the diagram for 4-bit up-down counter and explain its operation M8 a) Draw the excitation table and write the characteristic equation of SR Flip-Flop 8. and JK Flip-Flop 6M b) Explain the operation of Johnson counter with the help of neat diagram M8

UNIT-V

a) Minimize the following machine using partition technique and draw its reduced 9. state table

Present State	Next State, output(z)						
Present State	x = 0	x = 1					
Α	E, 0	C, 0					
В	C, 0	A, 0					
С	B, 0	G, 0					
D	G, 0	A, 0					
Е	F, 1	B, 0					
F	E, 0	D, 0					
G	D, 0	G, 0					

Explain the basic building blocks of ASM chart

OR

a) Design a sequence detector to detect the binary sequence 1111 using T Flip-flop 10. 8M

b) Explain the salient features of ASM chart

6M

M8

6M

		R-15	
Code	: 5G	II B.Tech. I Semester Supplementary Examinations May 2019	
		Electronic Circuits	
		(Electronics and Communication Engineering)	
Мо		Marks: 70 Time: 3 Hower all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks	

1.	a)	Draw the small signal hybrid equivalent model of a transistor. Derive the	
1.	,	expressions for A_{l} , Z_{i} , Av and Y_{o} .	8M
	b)	A CE amplifier is drawn by a voltage source of internal resistance $R_s=800$ and the load impedance is a resistance $R_L=1000$. The h-parameters are $h_{fe}=50$, $h_{ie}=1$ k , $h_{oe}=25$ µA/V and $hre=2$ x 10^{-4} . Calculate A_i , A_v , Z_i and Z_o using exact analysis.	6M
		OR	
2.		Draw the circuit diagram of two stage RC coupled transistors amplifiers. Explain the operation and calculate the mid frequency range and low frequency range.	14M
		UNIT-II	
3.		Determine high frequency parameters of Hybrid – model in terms of low frequency parameters.	14M
		OR	
4.	a)	Define Gain Bandwidth product and derive the relation between f_T and f .	7M
	b)	Derive the expression for CE Short circuit current gain with the help of necessary circuit diagrams and approximations. UNIT-III	7M
5.	a)	Derive the expression for feedback gain, input resistance and output resistance for voltage series feedback amplifier.	8M
	b)	A voltage series negative feedback amplifier has a voltage gain without feedback of A=50, input resistance $R_{\text{i}}=2K$, output resistance $R_{\text{o}}=15K$ and feedback ratio of 0.01. Calculate the voltage gain, input resistance and output resistance of the amplifier with feedback?	6M
		OR	
6.	a)	Prove that negative feedback increases the bandwidth and decreases the distortion.	7M
	b)	An amplifier has a gain of 400, f_1 =50Hz, f_2 =200KHz and a distortion of 10% without feedback. Determine the amplifier voltage gain f_{1f} , f_{2f} and D_f when a negative feedback is applied with feedback ratio of 0.01.	7M
		UNIT-IV	
7.	a)	With a neat circuit diagram, explain the generalized analysis of LC oscillator.	8M
	b)	Colpitt's oscillator is designed with C_2 =100 pF, C_1 = 7500pF and a variable inductance. Determine the range of inductance values, if the frequency of oscillation is varied between 950 KHz and 2050 KHz.	6M
8.	a)	OR Classify various types of oscillators. Explain in brief.	6M
	b)	Show that the gain of Wein-bridge oscillator using BJT amplifier is at least 3 for oscillations to occur.	8M
		UNIT-V	OIVI
9.	a)	Show the conversion efficiency of transformer coupled class A amplifier is 50%.	8M
3.	b)	Explain the operation of Class B push pull amplifier.	6M
10.		OR Describe the operation of a single tuned capacitive coupled amplifier and	
10.		derive the expression for bandwidth.	14M

Hall Ticket Number :

Code: 5G235

II B.Tech. I Semester Supplementary Examinations May 2019

R-15

Electrical Circuit Theory

(Electronics and Communication Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT-I

Determine the current through 3 ohms resistor using node voltage analysis

Explain about Star &Delta transformations with equations.

UNIT-II

- 3. a) Explain the advantages of AC supply
 - b) A series circuit consisting of a resistor of 10 ohms and an inductance of 100mH is connected across a 200V, 50Hz, single phase ac supply. Determine the current drawn, real power and reactive power

OR

- 4. a) Define Cycle, Time Period, Frequency, Peak to Peak value & Amplitude with wave forms.
 - b) A voltage wave is represented by v=200sin314t. Find i)Maximum value ii)RMS value iii) Average Value iv) Frequency v) Time period vi)instantaneous value after 0.05 sec.

UNIT-III

5. A steel ring of 180cm mean diameter has a cross-sectional area of 250mm². Flux developed in the ring is 250µWb when a 4000 turns coil carries certain current. Calculate i) MMF required ii) Reluctance iii) current in the coil. Assume relative permeability of steel is 1100.

OR

- 6. a) Derive the expression for resonant frequency of a parallel resonant circuit.
 - b) A series RLC circuit has R=1000 , L=100mH and C=10μF. If a voltage of 100V is applied across the series combination. Calculate i) Resonant frequency ii) Q-factor and iii) Half power frequencies.

UNIT-IV

7. Obtain the relationship between line and phase voltages and currents in Delta connection with phasor diagram.

OR

Code: 5G235

8. A three phase balanced system supplies 100V, 50Hz to star connected load whose phase impedances are (6+j8)ohm. Determine the line currents and voltages and also draw the phasor diagram.

- 9. a) State and explain Superposition theorem with an example
 - b) State and explain Millman's theorem.

OR

10. Find the load impedance Z_L across ab for maximum power transfer to the load. Also find the max. power delivered to the load impedance for the network shown below

