Code: 5GC32

II B.Tech. I Semester Supplementary Examinations August 2021

Mathematical Methods-III

(Common to EEE \& ECE)

Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Prove that the eigen vectors corresponding to the two different eigen values are linearly independent

OR

2. For what values of κ the equations $x+y+z=1 ; 2 x+y+4 z=\kappa$;
$4 x+y+10 z=\kappa^{2}$ have a solution and solve them completely in each case.

UNIT-II

3. Compute real root of $x e^{x}=\sin x$ using False Position method

OR
4. Compute $y(0.8)$ and $y(1.0)$ by Milne's method if $y^{\prime}=1+y^{2}, y(0)=0, y(0.2)=0.2027$, $y(0.4)=0.4228, y(0.6)=0.6841$.

UNIT-III

5. Find the missing term in the table

x	0	1	2	3	4
$f(x)$	1	3	9	-	81

6. Find first and second derivatives of y at $x=1.5$ if

x	1.5	2	2.5	3	3.5	4
y	3.375	7.000	13.625	24.000	38.875	59.000

UNIT-IV
7. Fit the curve of the $y=a e^{b x}$ to the following data

x	77	100	185	239	285
y	2.4	3.4	7.0	11.1	19.6

OR

8. Solve by the method of separation of variables $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$ and $u(0, y)=e^{-5 y}$.

UNIT-V

9. Expand $f(x)=\sqrt{1-\cos x}, 0<x<2$ in a Fourier series. Hence evaluate
$\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+--$

OR

10. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1-x^{2} \text { for }|x|<1 \\ 0, \text { for }|x|>1\end{array}\right.$
and hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

Code: 5G333

II B.Tech. I Semester Supplementary Examinations August 2021
 Signals and Systems

(Electronics and Communication Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Find the even and odd components of the following signal $x(t)=$ cost $+\operatorname{sint} 7 \mathrm{M}$ $+2 \sin t+4 \cos t$
b) Obtain the expressions to represent trigonometric Fourier coefficients in terms
\qquad
2. a) Show that a composite signal is periodic if the ratio of their fundamental periods is a rational number

of exponential Fourier coefficients.

OR

b) Find the Fourier series of the following wave form

8M 2 L3
UNIT-II
3. a) Find the Fourier Transform of a Gaussian Pulse
7M 3 L2
b) State and prove Differentiation Property of Fourier Transform
$7 \mathrm{M} \quad 2 \quad$ L3

OR

4. a) Find the Fourier transform of DC Signal
7M $\quad 3 \quad$ L4
b) State and prove Time Convolution property of Fourier Transform.

UNIT-III

5. a) Explain about the distortion less transmission
b) Explain the following
i. Signal Bandwidth
ii. System Bandwidth
iii. Paley-Wiener Criterion

OR

6. a) A signal $v(t)=\cos 5 \pi t+0.5 \cos 10 \pi t$ is instantaneously sampled.

The interval between the samples is T_{s}. If the sampling signal is
$S(t)=5 \sum_{k=-\infty}^{\infty} \delta(t-0.1 k) \quad$ and the $v_{s}(t)=\sum_{k=-\infty}^{\infty} I_{k} \delta(t-0.1 k)$
show that $I_{k}=I_{k+4} \quad$ where I_{k} is the strength of the $\mathrm{k}^{\text {th }}$ pulse
7M $\quad 3 \quad$ L4
b) Discuss the concept of Sampling of Band pass signals
7M 1 L1

UNIT-IV

7. a) Derive an expression for convolution of two signals. Find the convolution of unit step signal with itself

7M 4
b) Show that when two signals are convolved in time domain is multiplied in frequency domain.

7M 4

OR

8. a) Define auto correlation and cross correlation? Prove that the auto correlation
function is maximum at origin.
b) Find the autocorrelation and Energy Spectral Density(ESD) of $x(t)=e^{-a t} u(t)$
M
b)

UNIT-V
$\left.\begin{array}{l}\text { 9. a) Explain the Time convolution and Scaling properties of Laplace transform. } \\ \text { b) } \\ \text { Find the inverse Laplace transform of } x(s)=5(s+5) / s(s+3)(s+7) ; \operatorname{Re}(s)>-3 \\ 7 M\end{array}\right)$
10. a) Explain the constraints on ROC for various classes of signals $7 \mathrm{M} \quad 5 \quad \mathrm{~L} 2$
b) Derive the relation between Z transform and Fourier transform

7M 4
L4

