Hall Ticket N												R	-15
Code: 5GC32	ech. I Se	mestei	r Sur	ople	me	ntar	/ Fx	ami	natio	ns .	Augus	t 202	
1 0.1			•	emc						110 /	, to gos	1 202	
	70		(Co	mm	on t	o EEI	E & E	ECE)			- '	0.11
Max. Marks: Answer any fi		stions b	y ch	oosir	ng or ****	1e qu *****	estic	on fro	om ec	ich	unit (5		e: 3 Ho 10 Mark
					UNI	T–I							
Prove that the independent	-	ectors co	orres	pond	•		two	diffe	rent e	iger	n values	s are lii	nearly
OR For what values of κ the equations $x + y + z = 1$; $2x + y + 4z = \kappa$;													
$4x + y + 10z = \kappa^2$ have a solution and solve them completely in each case.													
·					UNI	Г—II]						
Compute rea	al root of <i>xe</i>	$x = \sin x$	r usi	ng Fa	alse	Posit	on n	netho	bd				
					O								
Compute $y(0.8)$ and $y(1.0)$ by Milne's method if $y' = 1 + y^2$, $y(0) = 0$, $y(0.2) = 0.2027$,													
y(0.4) = 0.42	228, y(0.6)	= 0.684	1.				٦						
UNIT-III Find the missing term in the table													
X	0		1			2		3			4		
f(x)	1		3			9		-			81		
OR Find first and second derivatives of y at x=1.5 if													
X	1.5	2		2.5			3		3.5		4		
У	3.375	7.000		13.6			000	3	8.875		59.000		
UNIT-IV Fit the curve of the $y = ae^{bx}$ to the following data													
X	77		100		1	85		23	9		285		
У	2.4		3.4		7	' .0		11	.1		19.6		
				<u>.</u>	O		2					—	
Solve by the	method of	separati	on of	varia	ables	$4\frac{\partial u}{\partial x}$	$+\frac{\partial u}{\partial v}$	$\frac{1}{2} = 3\iota$	i and i	ı(0,	$y)=e^{-5}$	<i>y</i> .	
]						
Expand $f(x)$	$) = \sqrt{1 - \cos \theta}$	$\overline{x}.0 < x$	< 2 i				」 es. ⊦	lence	evalu	iate			
-		.,											
$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5}$.7 +												
					O								
Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 for x < 1\\ 0, for x > 1 \end{cases}$													
and hence ev	valuate $\int_{0}^{\infty} \frac{1}{2}$	$\frac{x\cos x - x^3}{x^3}$	sin x	$\cos\frac{x}{2}$	$\frac{1}{2}dx$								
	•0	x°		2	2								

	Ц	all Ticket Number :			
			R-1	5	
	Co	Il B.Tech. I Semester Supplementary Examinations August 2	021		
		Signals and Systems	021		
		(Electronics and Communication Engineering)			
	Mo	T Answer all five units by choosing one question from each unit (5 x 14 = 70	ime: 3) Mark		rs
		*******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1	
			Marks	СО	Blooms Level
		UNIT–I			
1.	a)	Find the even and odd components of the following signal $x(t) = cost + sint +2sint+4cost$	7M	1	L3
	b)	Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.	7M	2	L2
		OR			
2.	a)	Show that a composite signal is periodic if the ratio of their fundamental periods is a rational number	6M	1	L1
	b)	Find the Fourier series of the following wave form			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
			8M	2	L3
3.	a)	UNIT–II Find the Fourier Transform of a Gaussian Pulse	7M	3	L2
0.	b)	State and prove Differentiation Property of Fourier Transform	7M	2	L2
	- /	OR			
4.	a)	Find the Fourier transform of DC Signal	7M	3	L4
	b)	State and prove Time Convolution property of Fourier Transform.	7M		
_		UNIT-III			
5.	a) b)	Explain about the distortion less transmission	6M	1	L3
	b)	Explain the following i. Signal Bandwidth			
		ii. System Bandwidth			
		iii. Paley-Wiener Criterion	8M	2	L1
-		OR			
6.	a)	A signal v(t)=cos5 t +0.5cos 10 t is instantaneously sampled. The interval between the samples is T_s . If the sampling signal is			
		$S(t) = 5 \sum_{k=-\infty}^{\infty} u(t-0.1k) \qquad \text{and the} v_s(t) = \sum_{k=-\infty}^{\infty} I_k u(t-0.1k)$			
		show that $I_k = I_{k+4}$ where I_k is the strength of the k th pulse	7M	3	L4
	b)	Discuss the concept of Sampling of Band pass signals	7M	1	L1

		UNIT–IV			
7.	a)	Derive an expression for convolution of two signals. Find the convolution of unit step signal with itself	7M	4	L3
	b)	Show that when two signals are convolved in time domain is multiplied in frequency domain.	7M	4	L2
		OR			
8.	a)	Define auto correlation and cross correlation? Prove that the auto correlation			
		function is maximum at origin.	7M	4	L4
	b)	Find the autocorrelation and Energy Spectral Density(ESD) of $x(t)=e^{-at}u(t)$	7M	4	L3
		UNIT-V			
9.	a)	Explain the Time convolution and Scaling properties of Laplace transform.	7M	5	L2
	b)	Find the inverse Laplace transform of $x(s) = 5(s+5)/s(s+3)$ (s+7); Re(s) > -3	7M	4	L4
		OR			
10.	a)	Explain the constraints on ROC for various classes of signals	7M	5	L2
	b)	Derive the relation between Z transform and Fourier transform	7M	4	L4

Г