cket Number :	
R-15	
Digital Design	
(Electronics and Communication Engineering)	
	ours

	6M
ii. The 7-bit Hamming coded message 0011011 has been transmitted	
through a noisy channel. Decode the message assuming that at most a	014
	8M
	6M
	••••
AND, OR, NOT and EXOR gates with universal gates.	8M
UNIT–II	
(i) $x'y + xy' + xy + x'y'$	
	014
	9M
	5M
	OW
(i) $(AB + C)(B + C'D)$	
(ii) $x' + x(x + y')(y + z')$	6M
Simplify the following Boolean function using tabulation method	
F(A,B,C,D) = (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)	8M
UNIT–III	
Explain about 4-bit magnitude comparator	8M
Implement full adder circuit with one 3 x 8 decoder and two OR gates	6M
	G332 B. Jech. I Semester Supplementary Examinations November 2018 Digital Design (Electronics and Communication Engineering) arks: 70 wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks) ********** UNIT-I Convert the following numbers: (i) (11001101.0101) ₂ to base 8 and base 4 (iii) (53.1575) ₁₀ to base 2 i. Construct even parity 7 bit Hamming code for the message 0101 ii. The 7-bit Hamming coded message 0011011 has been transmitted through a noisy channel. Decode the message assuming that at most a single error has occurred in the code word. OR Perform the following: (i) Subtraction by using 2's complement for the given 5250-1321 (ii) Subtraction by using 2's complement for the given 11010-1101 Why the NAND and NOR gates are called Universal gates. UNIT-I Simplify the following algebraic expressions: (i) x'y + xy' + xy + x'y' (iii) (BC' + A'D)(AB' + CD') Using K-map method, simplify the following 4-variable function F(w,x,y,z) = (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) OR Convert the following expressions into SOP a

		Code: 5G3	32
6.	a)	Implement the following Boolean function with 8 x 1 multiplexer	
		F(A,B,C,D) = (0, 3, 5, 6, 8, 9, 14, 15)	7M
	b)	A combinational circuit is defined by the function	
		$F_1(A,B,C) = (3, 5, 6, 7)$	
		$F_2(A,B,C) = (0, 2, 4, 7)$	
		Implement the circuit with a PLA having three inputs, four product terms and	
		two outputs.	7M
		UNIT–IV	
7.	a)	Distinguish between synchronous and asynchronous sequential circuits	6M
	b)	What is the drawback of JK Flip-Flop and explain how it overcomes with master slave JK Flip-Flop.	8M
		OR	
8.	a)	Explain the triggering methods of Flip-flops	6M
	b)	Design modulo-8 binary counter using Flip-Flops	8M
		UNIT-V	
9.	a)	Explain the capabilities and limitations of finite-state machine	6M
	b)	Design a sequence detector to detect the binary sequence 0101 using D Flip-Flops	8M
		OR	
10.	a)	Distinguish between Mealy and Moore machines	6M
	b)	Explain the designing procedure of serial binary adder with the help of any example	8M

Hall Tick	tet Number :							
Code: 50	R-15							
	B.Tech. I Semester Supplementary Examinations November 2018 Electronic Circuits (Electronics and Communication Engineering)							
Max. M Ansv		Urs						
1. a)	Draw and explain the circuit of cascaded amplifier and mention the advantages.	7M						
b)	Compare various coupling schemes used in amplifiers.	7M						
	OR							
2. a)	With a neat diagram, explain in detail about the operation of direct and transformer coupled amplifiers.	8M						
b)	State and prove miller's theorem.	6M						
		014						
3. a) b)	What are half power frequencies? Derive the expression for Current gain with R _L and explain the variation of	6M						
6)	frequency Response with R_L	8M						
	OR							
4. a)	Draw the Hybrid – model and discuss the significance of components present.	7M						
b)	Derive the expression for Diffusion capacitance.	7M						
5.	UNIT-III Derive the expression for input impedance and output impedance for the current series and current shunt feedback amplifiers. 1							
	OR							
6. a)	Explain the concept of feedback with block diagram.	7M						
b)	What are the characteristics of negative feedback amplifier? Explain.	7M						
7. a)	State and explain Barkhausen's criteria.	4M						
b)	Derive the expression for frequency of oscillations of RC phase shift oscillator.	10M						
	OR							
8. a)	Explain the working principle of crystal oscillator and derive expressions for frequency of oscillation.	7M						
b)	Explain the working of Hartley oscillator. Also derive the expression for its frequency of oscillations.	7M						
	UNIT–V							
9. a)	What is Q Factor? Write about unloaded and loaded Q in tuned circuit.	7M						
b)	A single tuned RF amplifier uses a transistor with an output resistance of 50 K , output capacitance of 15 pF and internal resistance of next stage is 20 k . The tuned circuit consists of 47 pF capacitance in parallel with series combination of 1 μ H inductance and 2 resistance. Calculate resonant frequency, effective quality factor and bandwidth of the circuit.	7M						
	OR							
10. a)	Draw and explain class B push pull amplifier. Show that in class B push pull amplifier the maximum conversion efficiency is 78.5%.	7M						

b) Draw and explain Class B complementary symmetry power amplifier. 7M

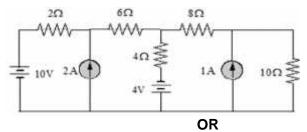
Hall Ticket Number :						
						R-15

Code: 5G235

II B.Tech. I Semester Supplementary Examinations November 2018

Electrical Circuit Theory

(Electronics and Communication Engineering)

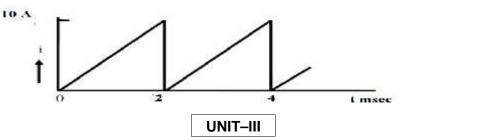

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

1. Simplify the circuit into one voltage source in series with a resistor and find the current in 10 ohms resistor using source transformation technique.

14M


- a) Explain in detail about Voltage-Current relationship of resistance, inductance and Capacitance.
 10M
 - b) The voltage and current in a circuit element is V=400sin(314t-20) and i=40sin(314t-20).Identify the elements and their values.
 4M

UNIT–II

- 3. a) Define Reactance, Impedance, Susceptance, Admittance. 7M
 - b) A series circuit having R=10 , L=1H and C=20µF connected across a 100V, 50Hz supply. Calculate (i) Impedance (ii) Current
 - iii) Voltage across R, L and C iv) Real power v) Reactive power
 - vi) Apparent power vii) Power factor.

OR

4. A current as shown in figure is applied across a 5 ohm resistor. Find V(t) and P(t) and draw their profiles.

14M

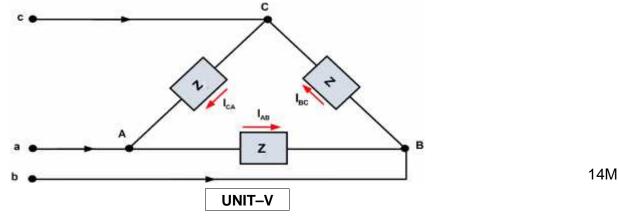
7M

7M

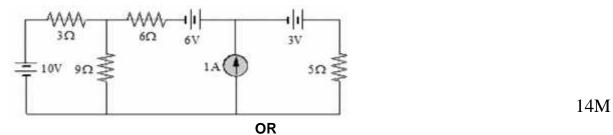
7M

- 5. a) A resistance of 15 ohms is connected in series with an inductance of 200mH and a capacitance of 100μ F. Determine the resonant frequency and bandwidth
 - b) Define bandwidth and Q factor of a resonant circuit. Derive the expressions for bandwidth and Q factor for a series resonant circuit
 7M

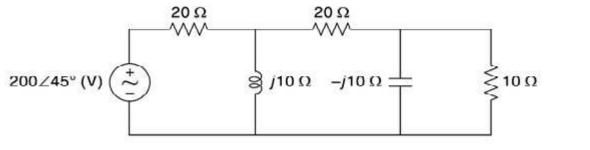
OR


- 6. a) Explain the concept of Dot convention with suitable example.
 - b) Two identical coils connected in series having equivalent inductances of 0.5H and
 0.1H depending upon their relative current directions. Determine L1, L2 ,M and K.
 7M

UNIT–IV


 Obtain the relationship between line and phase voltages and currents in Star connection with phasor diagram.
 14M

OR


8. A three phase balanced system supplies 110V to a delta connected load whose phase impedances are (3.554+j3.54)ohm. Determine the line currents and voltages and also draw the phasor diagram.

9. In the circuit find the power consumed by 5 ohms resistor using Thevenin's theorem.

10. a) Verify Reciprocity Theorem

b) State and explain Maximum Power Transfer Theorem for AC Excitations ***

8M

6M

Hall	Tick	et Number :]		
Code:	5G	°34								J				R-15	
Couc.		II B.Tech. I S	Sem	este	er Re	egul	ar E	xam	nina	tions	s Nc	ven	nber	2018	
						-		tal S							
		1 70			(Cc	mm	ion t	o EC	E &	IT)				.	
		rks: 70 er all five units	s hv i	chor	nsina	one	aue	estion	fron	nea	≏h u	nit (!	5 x 14	Time: 3 Hou = 70 Marks)	Jrs
, (115 ***		50,	oniot	Jania		*****			1 o a				, e mano j	
								UNIT							
1.	a)	What is an e										•			7M
	b)					/ario	us ii	nstitu	tions	and	d its	cor	ntribut	tions towards	
		environment	lai 50	arety.				OF	,						7M
2.	a)	Write the im	norta	nce	of er	viror	hmer			\$					7M
	b)										ental	awar	enes	s in the public.	7M
	,							UNIT						[
3.	a)	Write a note	on v	vorld	food	l prol	olem	s and	d its o	conse	eque	nces			7M
	b)	What is chip	oko m	ovei	ment	and	write	a no	ote o	n pre	serv	ation	of re	sources.	7M
								OF	R						
4.	a)	Explain with	exar	mple	s the	type	es of	ener	gy wi	th re	levar	nt ca	se stu	idies.	7M
	b)	Write a note	on E	Ener	ду со	nser	vatio	n							7M
_						_		JNIT-			_				
5.	a)	What is an e	•			•			•						7M
	b)	Explain with	relev	vant	exan	nples	s the			and	funct	ions	of an	eco-system.	7M
c	2)	Evaloia the	0 10 0 F	n, fla		~~ ~		OF	-						714
6.	a) b)	Explain the What is an e								iroc	of th		mo		7M 7M
	D)	What is all e	energ	ly Cy	cie a			JNIT-		162		e 5ai	ne		7 111
7.	a)	How ground	wate	r aet	s po	luted				few r	neas	sure f	or it.		7M
	b)	Explain brief		•	•			•	•						7M
		·						OF	R						
8.	a)	Explain mar	ine p	olluti	ion a	nd ca	ause	s of i	t.						7M
	b)	Write down	the e	ffect	s of ı	noise	poll	ution							7M
							ļ	JNIT	-V						
9.	a)	How urban a							ergy	issue	es.				7M
	b)	Write a note	on r	ain v	vater	harv	restir	-	_						7M
								OF							
10.	a)	Write a note				-		-			-				7M
	b)	Discuss the	meth	nods	and	adva	ntag **		rain	wate	er ha	rvest	ing		7M
							11.	•							

Hall 7	Fick	et Number :						
Code	· 50	2032						R-15
COUE		.Tech. I Semes	ster Supplen	nentary	Exam	inatior	ns Nove	ember 2018
			Mathem	-				
			(Comm	non to EE	EE & EC	CE)		
		arks: 70 ver all five units b	w choosing on		on from	eachi	init (5 x	Time: 3 Hours $14 = 70$ Marks)
	113 1			******		reacht		14 - 70 Marks j
				UNIT–	I			
1.	a)	Determine the r	ank of the mat	rix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 3 & 1 \\ 1 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	b)						consist	ent. If so, solve
		X + 2y + 2z = 2	; 3x - 2y - z = 5	5 ; 2x - 5y	' + 3z =	= - 4 ; x +	- 4y +6z	z = 0
				OF		– ·		
2.	a)	Find the Eigen $ \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & 6 \\ -1 & -2 & 0 \end{bmatrix} $		he corre	spondii	ng Eige	n vecto	rs of the matrix
	b)	Test for consiste	-	2x-3y+	-7 z = 5	; $3x + y + y = -\frac{1}{2}$	-3z = 13	;
		2x + 19y - 47z = 3	32					
3.	a)	Find a real root	of $r^3 - r^2 - 1 - 1$	UNIT-I		nethod		
0.		Using Euler's m		•			correst	conding to $x = 1$.
	0)	_				ilde el y	001100	, soliding to st 1,
		given $\frac{dx}{dy} = x + y$	y anu y-1wi	x = 0				
				OF	ł			
4.		Using R-K meth	nod of order 4,	find y fo	x = 0.	1,0.2,0.3	given tł	hat $\frac{dx}{dy} = xy + y^2$,
		y(0) = 1. Contin	ue the solutior	at $x = 0$.	4 using	Milne's	method	l.
				UNIT–I	II			
5.	a)	Find the cubic p	olynomial whic	ch takes t	he follo	wing va	lues	· · · · · · · · · · · · · · · · · · ·
		X	0	1			2	3
		f(x)	1	2			1	10
		And hence find	· · ·					
	b)	Find $\frac{dy}{dx}$ and $\frac{d^2}{dx}$	$\frac{x^2}{x^2}$ at $x = 1.1$ from $x = 1.1$	om the fo	llowing	table:		

Find $\frac{dy}{dx}$ and $\frac{d-y}{dx^2}$ at x = 1.1 from the following table:x1.01.11.21.31.41.51.6y7.9898.4038.7819.1299.4519.75010.031

6. a) Estimate the value of f(22) and f(42) from the following table by Newton's forward and backward interpolation formula:

x	20	25	30	35	40	45
f(x)	354	332	291	260	231	204
^	(1) and $($	$\mathcal{H}(\mathcal{A}) = 1$	1 7			

b) Compute f'(x) and f''(x) at x = 15

x	15	17	19	21	23	25
f(x)	3.873	4.123	4.359	4.583	4.796	5.800

UNIT–IV

7. a) Fit a straight line to the following data

x	1	2	3	4	5	6	7	8	9
У	9	8	10	12	11	13	14	16	5

b) Form the partial differential equation by eliminating a and b from $2z=(x-a)^{1/2}+(y-a)^{1/2}+b$.

OR

8. a) The pressure and volume of a gas are related by the equation $PV^{x} = k$, where x and k being constants. Fit this equation to the following set of observations.

P(kg/cm ₂)	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

b) Solve $z^2 = p q x y$ by Charpit's method

UNIT–V

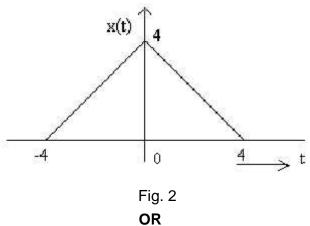
Find the Fourier series of $f(x) = \begin{cases} -f, -f < x < 0 \\ x, 0 < x < f \end{cases}$ and hence show that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{f^2}{8}$$

9.

OR

- 10. a) Obtain a half range cosine series for $f(x) = (x-1)^2$ in interval 0 < x < 1. Deduce the sum of series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{f^2}{8}$
 - b) Find the Fourier sine transform of the function $f(x) = \frac{e^{ax}}{x}, a > 0$.



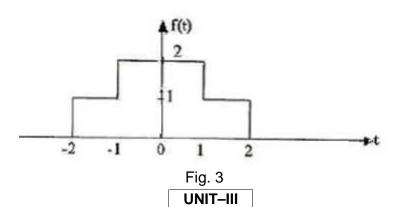
Hall Ticket Number :	D 15
Code: 5G333	R-15
II B.Tech. I Semester Supplementary Examinations Novemb	oer 2018
Signals and Systems	
(Electronics and Communication Engineering)	
Max. Marks: 70	Time: 3 Hours
Answer all five units by choosing one question from each unit (5 x 14 =	= 70 Marks)
UNIT-I	
1. a) Sketch the waveforms of the following Signals:	
u x(t) = u(t+1) - 2 u(t) + u(t-1)	
$u_{t}y(t) = r(t+1) - r(t) + r(t-2)$	
u(t,x(t)) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)	61
b) State and prove any FOUR properties of Fourier Series.	8
OR	•
2. a) Find the trigonometric Fourier Series for the periodic square wave f(t) illustrated in
Fig.1 and sketch its Amplitude and Phase spectra.	,
-3π -2π $-\pi$ $\frac{\pi}{2}$ π 2π	3π t
Fig. 1	8
b) Define mathematically and graphically the following continuous tim	ne elementary
signals:	-
i. Unit Impulse Signal	
ii. Unit Step Signal	

Also, give the relation between the two.

UNIT-II

- 3. a) State and prove time differentiation and integration properties of Fourier Transform. 6M
 - b) Find the Fourier Transform of the waveform shown in Fig. 2 in the following methods:
 - i. Using definition
 - ii. Converting first into impulses and using standard Fourier transforms

8M


6M

6M

8M

6M

- 4. a) State and prove time shifting and frequency shifting properties of Fourier Transform.
 - b) Find the Fourier transform of the waveform shown in Fig. 3 in the following methods:
 - i. Using definition
 - ii. Converting first into impulses and using standard Fourier transforms

- 5. a) What do you understand by the term signal bandwidth and system bandwidth? Illustrate.
 - b) How to test whether the system is physically realizable or not? Give both the time domain and frequency domain conditions used to test physical realizability? Give one example of system which is realizable and one system which is not realizable.
 8M

OR

6.	a)	What is an LTI system? Discuss all its properties with examples for each.	9M
	b)	"Linear system has characteristics of filter" Support the statement.	5M
		UNIT–IV	
7.	a)	What is Aliasing? How to avoid it? Illustrate with diagrams.	6M
	b)	Perform graphical convolution of $f_1(t)$ and $f_2(t)$.	
		$f_1(t) = 3[u(t-1) - u(t-4)]$	
		$f_2(t) = u(t-2) - u(t-7)$	8M
		OR	
8.	a)	State and prove sampling theorem.	7M
	b)	Derive the relation between Auto-correlation function and Power spectral density function.	7M
		UNIT–V	
9.	a)	Give the relation between DTFT and Z-Transform.	4M
	b)	State and Prove the following properties of Laplace Transform.	
		i). Initial-value theorem	
		ii). Final-Value theorem	
		iii). Time Scaling Property	
		iv). Time Scaling Property	
		v). Time-differentiation Property	10M
		OR	
10.	a)	What is the importance of ROC? List and explain properties of ROC of Laplace	
		transform with examples.	7M
	b)	Determine the Inverse Z Transform of the function	
		$x(z) = \frac{z-z}{(1-u.2z-1)(1-z-1)}$ with ROC of $0.2 < Z < 1$	7M