Ha	all Ticket Number :											[
Cod	le: 5G331											R-1	5
	ll B.Tech. I Seme	ester S	Suppl	eme	enta	iry Ex	kam	nina	tion	s No	vem	ber 2019	
			Ele	ectro	onic	: Cir	cui	ts					
	(Ele	ctroni	cs and	d Co	mm	unic	atio	n Er	ngine	eerin	g)		
Ма	ıx. Marks: 70											Time: 3	Hours
	Answer all five units	by cho	posing	one	que *****	stion ****	fron	n ea	ch u	nit (5	5 x 14	= 70 Marks	5)
					l		-1]					
1.	Explain the four h-p from the characteris							thes	se pa	irame	eters a	are found	
	Show that the voltage	ge gain	of CE	amp	olifier	with	an e	emitte	er res	sistor	R_E is		
	$\frac{-h_{fe}R_{L}}{R_{s}+h_{ie}+h}$	$\frac{1}{k_{fe}R_L}$ k	y assi	uminę	g hfe	>>1.	Neg	lect	h _{re} ar	id h _{oe}			14M
					OR								
2.	Draw the equivalent upper 3-dB frequent				•	er us	ing N	/liller	s the	orem	i. Wha	at is the	14M
					l	JNIT-	-11]					

3. Given =120, 1/hoe=40K .Obtain the cutoff frequencies associated with C_S , C_C , and C_E .

14M

OR

 Consider a single stage CE transistor amplifier with the load resistor "RL". Find out an approximation expression for the gain factor of this amplifier.
 14M

UNIT-III

5. Derive the input impedance (Zi) and output impedance (Zo) of a voltage series -ve feedback amplifier in terms of its open loop parameters. 14M 6. What are the advantages of providing negative feedback to an amplifier? A series shunt feedback amplifier represented by figure using a basic voltage amplifier operates with V_s =100mV and Vo=10V. What are the values of A and ?

 Why +ve feedback is generally used in oscillator circuits? Derive the oscillation frequency of a RC Phase Shift Oscillator.

14M

14M

14M

OR

What are the primary requirements to obtain steady oscillation at a fixed frequency? Sketch the topology of a generalized resonant circuit oscillator, using impedance Z₁, Z₂, Z₃. Reduce this circuit to Hartley and Colpitts oscillator choosing components suitably? At what frequency will this circuit oscillate?

UNIT–V

9. Explain the working principle of a push pull power amplifier. Justify your answer mathematically

For a class-B Power Amplifier providing a 22V Peak signal to an 8 load and a power supply of VCC=25V. determine:

- (a) Input Power, Pi(dc)
- (b) Output Power, Po(ac) and
- (c) Circuit efficiency, % .

OR

- 10. a) Derive the maximum efficiency of a series fed class A Power amplifier.
 - b) For the circuit shown, calculate the input power, the output power and efficiency of the amplifier for an input voltage resulting in a base current of 10mA peak.

Hall	Ticket Number :									
										R-15
Coa	e: 5G235	nostor Si	unnlar	ontar		minc	ition		Nom	
	ll B.Tech. I Ser				•			2 140	Jvem	
	(=		lectric				-	orin		
Ma	ر ⊏۱ x. Marks: 70	ectronic	sanac	ommu	nican		igine	enr	ig)	Time: 3 Hours
-	Answer all five uni	ts by cha	osina on		tion fro	n oc	nch u	nit (5×11	
		IS DY CHO	Using on	******		JIII EC		(J X 14	
				UNIT–I						
1.	Determine the les	n ourront				and a	loo ti	na hr	on oh y	voltogoo
1.	Determine the loc	p current	s using iv	iesn Ar	lalysis	anua	แรง แ	ie bi	anch	rollages
			6Ω	2	Ω		2Ω			
		· · · · ·	////	/V	W	-	-///\	/		
				L		~				
	1	2v(+)		$\leq_{3\Omega}$	VV	$\geq 1\Omega$		3Ω	\leq	
		\neg	-	1	1	~			\leq	
		S)			0					14 M
										14 10
				OR						
2. a)	Explain Current 8	Voltage I	Division F	Rules w	vith exa	ample	s.			6M
b)	Determine the po	wer delive	ered by th	ne 24V	source) .				

 Define Average & RMS Value, Form Factor & Peak Factor. 	7M
ł) Define Average & RMS Value, Form Factor & Peak Factor.

b) Explain about the sinusoidal response of series RL circuit.

OR

4. Determine Average, RMS of a Sinusoidal waveform and prove that the form factor of a Sinusoidal waveform is 1.11.

UNIT-III

A steel ring of 180cm mean diameter has a cross-sectional area of 250mm². Flux developed in the ring is 250µWb when a 4000 turns coil carries certain current. Calculate i) MMF required ii) Reluctance iii) current in the coil. Assume relative permeability of steel is 1100.

OR

- 6. a) Define self & mutual inductance. Derive the expression for coefficient of coupling.
 - b) A coil of 100 turns is wound uniformly over an insulator ring with a mean circumference of 2m and a uniform cross sectional area of 0.025cm². If a coil is carrying a current of 2A.Calculate MMF, Magnetic field intensity, Flux density, total flux.

7M

14M

7M

7M

14M

7M

7M

4M

UNIT–IV

- 7. a) What are the advantages of 3- System over 1- System?
 - b) Explain about three phase system with necessary equations and draw the three phase waveforms
 7M

OR

8. A delta connected load has a parallel combination of resistance 5 ohm and capacitive reactance (-j5 ohm) in each phase. If a balanced three phase 400 V supply is applied between lines find the phase currents and line currents and also draw the phasor diagram.

- a) State and explain Superposition theorem with an example
 - b) State and explain Millman's theorem.

OR

- 10. a) Determine I_L , V_L and P_L using Millmans Theorem for the circuit shown below.
 - $R_{1} \underbrace{\underbrace{}_{5 \Omega} R_{2} \underbrace{\underbrace{}_{4 \Omega} R_{3} \underbrace{\underbrace{}_{2 \Omega}}_{E_{3}} \underbrace{\underbrace{}_{4 \Omega} R_{3} \underbrace{\underbrace{}_{2 \Omega}}_{R_{L}} \underbrace{\underbrace{}_{3 \Omega} \underbrace{\underbrace{}_{V_{L}}}_{V_{L}}}_{I0 V} \underbrace{10 V \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{16 V} \underbrace{\underbrace{}_{8 V} \underbrace{}_{8 V}}_{I0 V} \underbrace{\underbrace{}_{2 \Omega} \underbrace{\underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{1 \Omega} \underbrace{\underbrace{}_{2 \Omega} \underbrace{}_{1 \Omega} \underbrace{}_{$
 - b) What are the applications of Maximum power transfer theorem?

Hall	Ticke	et Number :												· · · · · · · · · · · · · · · · · · ·	
Code	ə: 5 G	6C34	1	1		_L	1	1	1	J	1	1	J	R-15	
	II	B.Tech. I Se	mes					-				s Nc	vemb	oer 2019	
				E						enc ≩ IT)	e				
		arks: 70			•									Time: 3 Ho	
ŀ	Answ	ver all five uni	ts by	chc	osin	g on		estio *****	n fro	m ec	ich u	unit (5 x 14	= 70 Marks)	
								UNI	Г—I						
1.	a)	Briefly expla			•		•								7M
	b)	Categorize t	he di	scipl	lines	of er	nviro			ustrat	te the	e sigi	nifican	ce of each.	7M
2.	a)	Enumerate t	ho n	ممط	of nu	blic		OF		anvira	nme	ntal	nrotec	tion	7M
۷.	b)												-	sponsibilities	
	5)	in environme	•			•	лс р	antici	pano	11 411	u ma	Siluti		sponsionnes	7M
								UNI	 11						
3.	a)	Distinguish b	betwe	een t	radit	ional	and	mod	ern a	agricu	ulture) .			7M
	b)	Define Floor	d and	l Dro	ught	. Exp	lain			s for	flood	ds ar	nd drou	ıght.	7M
4	-)	0			l I			OF	-						714
4.	a)	Compare re													7M
	b)	Enumerate t	ne ro		rinai	vidua		CONS UNIT		ation	of na	iturai	resou	rces.	7M
5.	a)	Explain fore	st ec	osys	tem	with				l com	ipone	ents.			7M
	b)	Illustrate Fo	od ch	, nain,	Food	d wel	o and	l eco	logic	al py	rami	d wit	h exan	nple.	7M
								OF							
6.	a)	Outline the fu	nctio	nal u	nits o	f any	one	aquat	ic ec	osyst	em w	ith th	eir com	ponents.	7M
	b)	Categorize o	differ	ent v	alue	s of k	biodiv	/ersit	У	_					7M
_	,							UNIT							
7.	a)	Classify air po												monuments.	7M
	b)	Summarise	the c	ause	es an	d co	ntrol	meth OF		of so	il pol	lutio	n.		7M
8.	a)	What are the	majo	r Maı	rine p	olluta	ants?			ow to	cont	rol m	arine po	ollution.	7M
-	b)	Define Strati	-		-								-		7M
	,				•			UNIT					•		
9.	a)	Justify the ro	ole of	[:] ethi	cs in	envi	ronm	nenta	l pro	tectio	on.				7M
	b)	Explain brief	ly ca	uses	s, eff	ects	and o	contro	ol me	easur	res fo	or glo	bal wa	arming.	7M
					_	_	_	OF					_		
10.	a)	Justify the n													7M
	b)	Explain hum	an ri	ghts	and	resp		oilitie: ***	s in r	elatio	on to	envi	ronme	nt.	7M
							ተ ተ	ጉጉ ጥ							

на	Ticket Number : R-15	
Coc	e: 5GC32 Il B.Tech. I Semester Supplementary Examinations November 2019	
	Mathematical Methods-III	
	(Common to EEE & ECE)	
MC	x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Urs

	UNIT-I	
2)	$\begin{vmatrix} -1 & -5 & 5 & -1 \\ 1 & 1 & -1 & 0 \end{vmatrix}$	
a)	Reduce the matrix $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & -2 & 6 & -7 \end{bmatrix}$ to Echelon form and find its rank.	
	$\begin{bmatrix} -1 & -2 & 6 & -7 \end{bmatrix}$	71
	$\begin{bmatrix} 6 & 2 & 1 \end{bmatrix}$	
b)	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 6 & 2 & 1 \\ 6 & 1 & 2 \\ 7 & 2 & 2 \end{bmatrix}$ and find its inverse.	
	$\begin{bmatrix} 7 & 2 & 2 \end{bmatrix}$	71
a)	OR State Caulay Hamilton theorem and varify Caulay Hamilton theorem for	
a)	State Cayley-Hamilton theorem and verify Cayley-Hamilton theorem for $\begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$	
	$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 5 \end{bmatrix} \text{ and hence find } A^{-1}.$	
	$\begin{bmatrix} 1 & -1 & 5 \end{bmatrix}$	8
b)	Prove that A^m has the eigen values $\binom{m}{1}, \binom{m}{2}, \binom{m}{3}, \dots, \binom{m}{n}$ if $\binom{1}{1}, \binom{1}{2}, \binom{3}{3}, \dots, \binom{m}{n}$ are the	
	eigen values of A, where m being a positive integer.	6
	UNIT-II	
a)	Evaluate $\sqrt[3]{24}$ by Newton Raphson method	7
b)	Employ Taylor's method to obtain appropriate value of y at $x = 0.2$ for the differentia	I
	equation $\frac{dx}{dy} = 2y + 3e^x$, $y(0) = 0$. Compare the numerical solution obtained with the	
	dy exact solution.	7
	OR	,
a)	Find a root of the equation $x^3 - 2x - 5 = 0$, using the Bisection method correct to)
	three decimal places.	7
b)	Using D K method of D k order calls $dy = y^2 - x^2$ with (0) 1 at x = 0.2.0.4	
5)	Using R-K method of IV order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2, 0.4$	7
	UNIT–III	
a)	Find the missing term in the table	
	x 0 1 2 3 4 f(x) 1 3 9 - 81	7
b)	Find first and second derivatives of y at x=1.5 if	-

х	1.5	2	2.5	3	3.5	4	
У	3.375	7.000	13.625	24.000	38.875	59.000	7M
			OR				-

6. a) Use Lagrange's interpolation formula to find the value of y when x = 10, if the following values of x and y are given

X	5	6	9	11	
У	12	13	14	16	7M

b) Use Trapezoidal rule and Simpson's $\frac{1}{3}$ rule to estimate $\int_{0}^{1} \frac{1}{1+x^{2}} dx$

7.	a)	Fit a second degree parabola to the following data

/		5 1		5			
	X	0	1	2	3	4	7M
	у	1	1.8	1.3	2.5	6.3	

b) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$

8. a) Fit the curve of the form $y = ae^{bx}$ to the following data

x	0	1	2	3	
У	1.05	2.10	3.85	8.30	7M

b) Solve
$$(mz - ny)p + (mx - lz)q = (ly - mx)$$

UNIT-V
s for the function
$$f(x) = x - x^2$$
 in the interval $[-f, f]$ Hence

9. a) Obtain the Fourier series for the function
$$f(x) = x - x^2$$
 in the interval $[-f, f]$ Hence
show that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \infty = \frac{f^2}{12}$ 7M

b) Show that $e^{\frac{x^2}{2}}$ is a self-reciprocal with respect to Fourier Transform.

OR

10. a) Obtain Fourier series for the function $f(x) = \begin{cases} fx, 0 \le x \le 1 \\ f(2-x), 1 \le x \le 2 \end{cases}$ and hence

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \infty = \frac{f^2}{8}$$
7M

b) Find the Fourier sine transform of
$$\frac{x}{x^2 + a^2}$$
 and the Fourier cosine transform of $\frac{1}{x^2 + a^2}$ 7M

UNIT–IV

OR

7M

Code: 5GC32

7M

7M

Hall	Tick	et Number :]
Code	e: 5G	-333	1	1			1	1		J	1	J	1	R-15	
II B.Te	ech	. I Semeste	r Re	gulo		•	•					natio	ons N	ovember 2	2019
		(=	laati	onic	-				yste			oori			
Мах	. Mc	ırks: 70	IECII	Onic	-2 UI	iu C	Omi	noni	cun	JUE	ngii	ieerii	ig j	Time: 3 H	ours
A	\nsw	er all five uni	ts by	chc	osin	g on		estio *****		m ec	uch ı	unit (5 x 14	= 70 Marks)	
								UNIT							
1.	a)	Explain how	a fun	octior	n can	be a	pprox	kimat	ed by	/ a se	et of o	orthog	gonal f	unctions.	6M
	b)	State and pro	ove a	iny fo	bur pr	oper	ties c	of Fou	urier S	Serie	S				8M
								OF	R						
2.	a)	A rectangula			• •			•	• •						
		the mean squ				•		10111	SIII	over	the	nierv	ai (0, 4	2) such that	7M
	b)	Obtain the tri	igonc	metr	ic Fo	urier	serie	es for	the s	signa	l x(t)				
								×(r)	6	•					
					-	/	\searrow	4	\mathbf{Y}						71.4
							H								7M
3.	a)	State and pro	ove D	Differ	entiat	ion a		JNIT itegra		prope	erties	s of F	ourier ⁻	Transform.	7M
	b)	Discuss abou						-							7M
								OF	R						
4.	a)	Analyze how	Fou	rier tı	ransf	orm i	s der	ived	from	Four	ier se	eries.			7M
	b)	State and pr Transform.	rove	time	conv	/oluti	on a	nd ti	me d	iffere	entiat	ion p	roperti	es of Fourier	7M
							ι	JNIT-	-111						
5.	a)	State and de	rive t	he re	elatio	nship	betv	veen	banc	lwidtl	n and	l rise	time.		7M
	b)	Discuss abou	ut dis	tortic	on les	s tra	nsmi			syste	em w	ith ar	n exam	ple.	7M
_								OF							
6.	a)	State and pro		-	-					-		-			7M
	b)	given as follo	•			•			•		na u	nit sa	ampie	response are	9 7M
		0		()		()		JNIT-		()					
7.	a)	Determine th h(n) = { 4,3,2		oss c	orrel	ation	betw	/een	the t	NO SE	eque	nces	x(n) =	{1,0,0,1} and	l 7M
	b)	Graphically c													
		$X_1(t) = \begin{cases} 1 & f \\ 0 & \end{cases}$	or-	T ≤ else v	t≤′T wher	e	and								
		$X_2(t) = \begin{cases} 1 & f \\ 0 \end{cases}$	or –	2T ≤ else	t≤ whe	2T re									7M
								OF	R						

7M

- 8 a) A system with impulse response e^{-t} u (t) is excited by a signal x(t) = e^{-2t} u(t) Find the output of the system using convolution in time property of Fourier transform.
 7M
 - b) Find the Cross correlation between triangular and gate function as shown in below figure.

- 9 a) Find the inverse z-transform of x(z) = (z² + z)/(z 1)(z 3), ROC: z > 3 using
 i) Partial fraction method, ii) Residue method
 - b) State and prove initial value and final value theorems of Laplace transform 7M

OR

- 10 a) Find the inverse z-transform of $x(z) = (z^2 + z)/(z 1)(z 3)$, *ROC*: z > 3 using i) Partial fraction method, ii) Residue method and iii) Convolution method 9M
 - b) Find the inverse Laplace transform of F(s) = (s + 4) / (s+3) (s+2); -3 < Re(s) < -2. 5M

Hall	Tick	et Number :	
Code:		R-15	
Coue.		5.7 Tech. I Semester Supplementary Examinations November 2019	
		Digital Design	
Max. I A	-	er all five units by choosing one question from each unit (5 x 14 = 70 Marks)	Jrs
1.	a)	UNIT–I Explain how to subtract BCD numbers, by stating the rules for generating borrows and applying the correction factor with suitable examples	7M
	b)	Write the Gray and XS-3 codes of a given decimal number 512.	7M
	- /	OR	
2.	a)	What are Logic Gates?	4M
	b)	Discuss the laws of Boolean algebra with proofs	10M
		UNIT-II	
3.	a)	Draw the truth table and write Boolean expression for the following:	
		 i) F is a 1 only if X is a 1 and Y is a 1 or if X is 0 and Y is a 0. ii) G is a 0 if any of the three variables X, Y and Z are 1s. G is a 1 for all other conditions. 	
		Implement the expressions using NAND gate only	7M
	b)	Simplify the following using Tabular method. F(A,B,C,D) = (1,5,6,12,13,14) + d (2,4)	7M
		OR	
4.	a)	Reduce the following expression in SOP and POS forms using mapping $f = m (0,2,3,10,11,12,13,16,17,18,19,20,21,26,27)$	6M
	b)	For the given function $T(w,x,y,z) = (0,1,2,3,4,6,7,8,9,11,15)$	
		 i. Show the map ii. Find all prime implicants and indicate which are essential. iii. Find a minimal expression for T and realize using basic gates. Is it unique? 	8M
5.	a)	Construct a combinational logic circuit which converts a decimal number into an equivalent Excess -3 number. Implement the same using Multiplexer	7M
	b)	Implement the following expression using ROM, PAL and PLA $F_0 = A$ and $F_1 = A'B' + AB$	7M
		OR	
6.	a)	Design a 4 bit parallel adder using Full adder modules.	7M
	b)	Design a 64:1 MUX using 8:1 MUXs.	7M

UNIT–IV

7. a) What is excitation table? Write the excitation table for the following flipflops

a) SR flipflop b) JK flipflop c) D flipflop d) T flipflop 7M

b) Design a modulo 10 counter using JK flipflops.

OR

- 8. a) Write the conversion procedures of the Flip Flops. Convert (i) T flip flop to JK flip flop. (ii) Convert D flip flop to T flip flop (iii) SR to JK flip flop.
 8M
 - b) Draw the block diagram of modulo 10 ripple counter and explain. 6M

UNIT–V

- 9. a) What are the salient features of ASM chart? Explain with an example. 6M
 - b) What is the difference between Mealy and Moore machine? For the machine shown, find the equivalent partition and a corresponding reduced machine in standard form.

PS

A	F,0	B,1
В	G,0	A,1
С	В,0	C,1
D	C,0	B,1
E	D,0	A,1
F	E,1	F,1
G	E,1	G,1

OR

10. a) Convert the following Moore machine to a Mealy machine

Present	Next State		Output
State	X=0	X=1	Output
А	D	В	0
В	В	С	1
С	С	D	0
D	D	В	0

5M

9M

b) Draw the State diagram of a sequence detector which is designed to detect the pattern 1001 and allowing the overlapping in the input sequence. Draw the ASM chart for the state diagram. Explain the sequence of operations of each block. Also design the Data path circuit and control circuit.

Ċ

7M