Hall Ticket Number :

Code: 5G131

|| B.Tech. I Semester Supplementary Examinations February 2022

Advanced Data Structures Through C++

(Computer Science and Engineering)
Max. Marks: $70 \quad$ Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Explain the basic principles of object oriented programming 7 M
b) Define class? How the member functions can be defined with examples 7M
OR
2. a) Illustrate the significance of access specifiers in a class of C++? 7M
b) How do you create a static member function? Explain with example 7M

UNIT-II

3. a) Differentiate between Constructor Overloading and Function Overloading
b) Discuss in detail about Polymorphism

OR

4. What is template? Explain about function templates and class templates with suitable
examples.

UNIT-III

5. a) What are the uses of hash functions?
b) Distinguish between separate chaining and linear probing.

OR

6. a) Define a Queue. List out any four applications of Queue. 4M
b) Discuss about linked implementation of queue ADT. 10M
UNIT-IV
7. a) Define BST. Demonstrate its operations with suitable examples 7M
b) Demonstrate Priority Queue using Heaps with examples 7M
OR
8. a) Explain external sorting on disk with example. 7M
b) What is ascending priority queue? What are the applications of priority queue? 7M

UNIT-V

9. Write short notes on the following
i. Standard Tries
ii. Compressed Tries and
iii. Suffix Tries
OR
10. a) Draw a B-Tree of degree 3 and explain. 4M
b) Describe Boyer-Moore algorithm with an example. 10M

Code: 5G431

|| B.Tech. I Semester Supplementary Examinations February 2022

Discrete Mathematics

(Computer Science and Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) Explain Free and Bound variables with examples.
b) Verify the principle of duality for the following logical equivalence.

$$
(P V Q) \wedge\left(\sim P^{\wedge}\left(\sim P^{\wedge} Q\right)\right) \Leftrightarrow\left(\sim P^{\wedge} Q\right)
$$

OR

2. a) What is Tautology? Prove that the following statement is tautology or not.
$\left((P->R)^{\wedge}(Q->R)\right)->((P V Q)->R)$
b) Show that $\left(\sim P^{\wedge}\left(\sim Q^{\wedge} R\right)\right) V\left(Q^{\wedge} R\right) V\left(P^{\wedge} R\right)<=>R$

UNIT-II

3. a) Explain partition and covering of a set.
b) Let $\mathrm{X}=\{1,2,3,4,5\}$ and $\mathrm{R}=\{\langle\mathrm{x}, \mathrm{y}\rangle|\mathrm{x}\rangle \mathrm{y}\}$. Draw the graph of R and also its matrix.

OR

4. a) Let $X=\{1,2,3,4,5,6,7\}$ and Relation $R=\{(x, y) \mid$ ($x-y$) divisible by 3$\}$ in X. Check Whether the relation R is Equivalence relation or not.
b) Explain types of functions with examples.

UNIT-III

5. a) Explain Binomial and multinomial theorems. 9M
b) Prove by pigeonhole principle that in a group of 61 people, at least 6 people were born in the same month.

OR

6. a) State Principle of Inclusion-Exclusion with example.
b) How many different license plates are there that involve 1,2 or 3 letters followed by 4 digits?
7. Solve the recurrence relation $\begin{gathered}\text { UNIT-IV } \\ 2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n} \\ \text { OR }\end{gathered}$
8. a) Solve the recurrence relation $a_{n}=a_{n-1}+f(n), n \geq 1$ by substitution.
b) Solve the recurrence relation $a_{n}+a_{n-1}-8 a_{n-2}-12 a_{n-3}=0$, with $a_{0}=1, a_{1}=5, a_{2}=1$ for $n>=3$

UNIT-V

9. a) What is BFS? Explain with an example. 8M
b) Define the following terms with examples.
i) Euler circuit ii) Hamiltonian cycle
10. a) What is Four-coloring problem? Explain with an example 7M
b) What is bipartite graph? Explain with an example.
