
	Hall	Ticket Number :														7
Į	Cod	e : 5G131			1	<u> </u>	1	<u> </u>	<u> </u>	J	<u> </u>	J	l		R-15	
	000	II B.Tech. I Se	eme	este	r Sup	ople	eme	ntar	y Ex	ami	nati	ons	Marc	:h 2	021	
		Ac					Stru				-		++			
	Max	. Marks: 70	(C	om	oute	er Sci	ienc	e ar	nd Er	ngine	eerir	ng)		т	ime: 3 Hours	
	MUX	Answer all five uni	ts by	cho	osing	g on	e qu	estio	n fro	m ec	αch ι	unit (5 x 14			'
							****	*****								
						ι	JNIT-	-I								
1.	a)	Explain the basic p	rincip	oles d	of obj	ject o	orient	ed pr	ograi	nmin	g					
	b)	Define class? How	the r	neml	ber fu	unctio	ons c	an be	e defi	ned v	vith e	exam	ples			
_							0									
2.	,	Write about parame	•		•						•					
	b)	Demonstrate static	clas	s me	mber	's wit	n the	neip	or ai	n exa	mpie					
						U	INIT-	-11								
3.	a)	Define Constructor	. Exp	lain t	types				s witl	n exa	mple	s.				
							0	R								
4.	a)	What is abstract cla	ass?													
	b)	Write a C++ Progra	am to	impl	eme	nt the	e abs	tract	class	.						
5.	a)	Define a Queue. Li	st ou	t anv	four		NIT-									
0.	b)	Discuss about linke				• •										
	,			•			Ō									
6.		Define Hash Table	? Dis	cuss	in de	etail a	about	t collis	sion	resolu	ution	tech	nique?			
-	-)			- (D		L	NIT–									
7.	a) b)	What are the prope Demonstrate Binar							with	algor	ithm	-				
	D)	Demonstrate Dinar	y ne			arre	0 0	•	WILLI	aigui		5.				
8.	a)	Define AVL Trees.	Expla	ain th	ne AD	DT of										
	b)	Create an AVL tree	e with	the	follov	ving	elem	ents:								
		(12,22,54,19,11,84	,63,1	7,15	,4,13	5)										
9.	a)	Describe Boyer-Mo	ore	alaar	ithm		NIT-		0							
5.	b)	What is a Red-Blac		•				•	С.							
	~)			- - · · -		0,910	0 0									
10.		Write short notes o	n the	follc	wing											
		Standard Tries ii.			•		and	ii b	i. Sul	fix Tr	ies					

	~	R-15	
	Cod	de: 5G132	J
		II B.Tech. I Semester Supplementary Examinations March 2021	
		Digital Logic Design	
	Ma	(Computer Science and Engineering) x. Marks: 70 Time: 3 Hours	
		Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	
		UNIT–I	
	a)	Perform the following using 2's complement.	
		i) 11010 – 1101 ii) 101011 – 100110	
	b)	Obtain the truth table for the function $F = XY + XY' + Y'Z$	
		OR	
2.	a)	Convert the following numbers into decimals	
		(i) (B65F) ₁₆	
		(ii) (127.4) ₈	
		(iii) (4021.2) ₅	
		(iv) (1010110) ₂	
	b)	Expand A + BC'+ ABD'+ ABCD to MIN TERMS and MAX TERMS.	
	-	UNIT-II	
3.	a)	Implement Ex-OR gate using NOR gates.	
	b)	Draw the multiple-level NAND circuit for the following expression:	
	,	F = W (X + Y + Z) + XYZ	
		OR	
ŀ.	a)	Show that the dual of the exclusive-OR is equal to its complement	
	b)	Simplify the Boolean function using three variable map $F(X, Y, Z) = \sum (0, 1, 5, 7)$	
		UNIT-III	
5.	a)	Define Decoder. Construct 3-to-8 Decoder using logic gates?	
	b)	Implement a Full Adder with two 4 X 1 Multiplexers?	
		OR	
.	a)	Explain about 3-bit Magnitude Comparator?	
	b)	Design a Half-Subtractor with inputs x and y and outputs D and B. The circuit subtractor x-y	
		and places the difference in D and the borrow in B?	
		UNIT-IV	
′ .	a)	Convert a SR flip-flop to D type Flip-Flop?	
	b)	Write difference between Combinational & Sequential circuits?	
		OR	
3.	a)	Explain with the help of neat diagram, the operation of 3-bit bidirectional shift register?	1
		UNIT-V	
).	a)	Draw and explain the operation of 4 bit ring counter?	
	b)	What is ROM? List the different types of ROMs?	
		OR	
).	a)	Draw and explain 4-bit Johnson counter using D-flip flop?	
	b)	Implement the two Boolean functions with a PAL.	
		F1(A,B,C) = m(0,2,3,6), F2(A,B,C) = m(1,2,5,6)	

ſ	Ha	I Ticket Number :
Ĺ		R-15
	COL	le: 5G431 Il B.Tech. I Semester Supplementary Examinations March 2021
		Discrete Mathematics
		(Computer Science and Engineering)
	Ma	x. Marks: 70 Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)
		UNIT–I
1.	a)	Define Statement and Explain various Connectives with Example.
	b)	Construct truth table for the following formula
		(P^Q)V(~P^~Q)V(P^~Q) OR
2.	a)	Write Converse, Inverse and Contrapositive of the following statements.
		i) ~P->~Q
		ii) P->~Q
	b)	Prove that (P->Q)^(R->Q)<=>(PVR)->Q by using substitution method.
0		UNIT-II
3.		State relation and explain properties of binary relations with examples. OR
4.		What is Hass diagram? Let X={2,3,6,12,24,36} and the relation on set X defined by x
••		divides y then draw the Hass diagram.
		UNIT–III
5.		Define Group, monoid, semigroups and subgroups with examples.
		OR
6.	a)	Explain pigeonhole principle with example.
	b)	A certain question paper contains 2 parts A and B each containing 4 questions. How many different ways a student can answer 5 questions by selecting at least 2
		questions from each part?
		UNIT-IV
7.	a)	Find the generating function for the following sequence.
		i) $1^2, 2^2, 3^2, \dots$ Ii) $1^3, 2^3, 3^3, \dots$
	b)	Find the coefficient of x^{20} in $(x^3+x^4+x^5+)^5$ OR
8.		Solve the recurrence relation using generating function. $a_n - 9a_{n-1} + 20a_{n-2} = 0$, for n 2
0.		and $a_0 = -3$ and $a_1 = -10$.
		UNIT-V
9.	a)	Define a graph and explain various representations of graph with examples.
	b)	Define Planner graph with examples.
10.		OR Explain kruskals algorithm? .Find Minimum cost spanning tree cost for the following
10.		graph.
		10 14 16

Hall Ticket Number :								Г
	1	1	 1		J	J	1	R-15

Code: 5GC33

II B.Tech. I Semester Supplementary Examinations March 2021

Probability & Statistics

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

1. Let X denote the minimum of the two numbers that appear when a pair of fair dice is thrown once. Determine the (i) Discrete probability distribution (ii) Expectation (iii)Variance

OR

2. A card is drawn from a well shuffled pack of cards. What is the probability that it is either a spade or an ace?

UNIT–II

The marks obtained in statistics in a certain examination found to be normally distributed. If 15% of the students 60 marks, 40% of the students > 30 marks, find the mean and standard deviation

OR

4. For a normally distributed variate with mean 1 and standard deviation 3, find the probabilities that (i) 3.43×6.19 (ii) -1.43×6.19

UNIT-III

5. A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car and he wants to be able to assert with 95%. Confidence that the mean of his sample is of by at most 0.5 minutes. If he can presume from past experience that $\sigma = 1.6$ minutes how large a sample will have to take

OR

6. Find 95% confidence limit for the mean of a normality distributed population from which the following sample was taken 15, 17, 10, 18, 16, 9, 7, 11, 13, 14

UNIT–IV

7. A sample of 400 items is taken from a population whose standard deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38. Also calculate 95% confidence interval for the population

OR

8. The standard deviation of two samples are 8 & 12, samples sizes are 200 and 100. Find the standard error of the difference between the means and also find the confidence interval at 5% level, Means of the samples are 60,50.

UNIT-V

9. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-A	14.1	10.1	14.7	13.7	14.0						
Unit-B	14.0	14.5	13.7	12.7	14.1						
	OR										

10. A pair of dice are thrown 360 times and the frequency of each sum is indicated below:

-						-	-				
Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significance?