\square
Code: 5G131
II B.Tech. I Semester Supplementary Examinations March 2021

Advanced Data Structures Through C++

(Computer Science and Engineering)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain the basic principles of object oriented programming
b) Define class? How the member functions can be defined with examples

OR
2. a) Write about parameter passing methods in $\mathrm{C}++$ with examples
b) Demonstrate static class members with the help of an example.

UNIT-II

3. a) Define Constructor. Explain types of constructors with examples.
OR
4. a) What is abstract class?
b) Write a C++ Program to implement the abstract class.

UNIT-III

5. a) Define a Queue. List out any four applications of Queue.
b) Discuss about linked implementation of queue ADT.

OR
6. Define Hash Table? Discuss in detail about collision resolution technique?

UNIT-IV

7. a) What are the properties of Priority Queues?
b) Demonstrate Binary Tree Traversal Techniques with algorithms.

OR

8. a) Define AVL Trees. Explain the ADT of AVL Tree.
b) Create an AVL tree with the following elements:
(12,22,54,19,11,84,63,17,15,4,13)

UNIT-V

9. a) Describe Boyer-Moore algorithm with an example.
b) What is a Red-Black Tree? List its properties.

OR
10. Write short notes on the following Standard Tries ii. Compressed Tries and iii. Suffix Tries

II B.Tech. I Semester Supplementary Examinations March 2021

Digital Logic Design

(Computer Science and Engineering)

Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Perform the following using 2's complement.
i) 11010-1101
ii) 101011 - 100110
b) Obtain the truth table for the function $F=X Y+X Y^{\prime}+Y^{\prime} Z$

OR

2. a) Convert the following numbers into decimals
(i) $(\mathrm{B} 65 \mathrm{~F})_{16}$
(ii) $(127.4)_{8}$
(iii) $(4021.2)_{5}$
(iv) $(1010110)_{2}$
b) Expand $\mathrm{A}+\mathrm{BC}$ ' + ABD'+ ABCD to MIN TERMS and MAX TERMS. 6M

UNIT-II

3. a) Implement Ex-OR gate using NOR gates.
b) Draw the multiple-level NAND circuit for the following expression:
$F=W(X+Y+Z)+X Y Z$
4. a) Show that the dual of the exclusive-OR is equal to its complement
b) Simplify the Boolean function using three variable map $F(X, Y, Z)=\sum(0,1,5,7)$

UNIT-III

5. a) Define Decoder. Construct 3-to-8 Decoder using logic gates?
b) Implement a Full Adder with two 4 X 1 Multiplexers?
6. a) Explain about 3-bit Magnitude Comparator?

UNIT-IV

7. a) Convert a SR flip-flop to D type Flip-Flop?
b) Write difference between Combinational \& Sequential circuits?

OR

8. a) Explain with the help of neat diagram, the operation of 3-bit bidirectional shift register?

UNIT-V

9. a) Draw and explain the operation of 4 bit ring counter?
b) What is ROM? List the different types of ROMs?
10. a) Draw and explain 4-bit Johnson counter using D-flip flop?
b) Implement the two Boolean functions with a PAL.
$F 1(A, B, C)=\sum m(0,2,3,6), F 2(A, B, C)=\sum m(1,2,5,6)$

II B.Tech. I Semester Supplementary Examinations March 2021
Discrete Mathematics

(Computer Science and Engineering)

Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define Statement and Explain various Connectives with Example.
b) Construct truth table for the following formula
$\left(P^{\wedge} Q\right) V\left(\sim P^{\wedge} \sim Q\right) V\left(P^{\wedge} \sim Q\right)$

OR

2. a) Write Converse, Inverse and Contrapositive of the following statements.
i) $\quad \sim P->\sim Q$
ii) $\quad P->\sim Q$
b) Prove that $(P->Q)^{\wedge}(R->Q)<=>(P V R)->Q$ by using substitution method.

UNIT-II

3. State relation and explain properties of binary relations with examples.

OR

4. What is Hass diagram? Let $X=\{2,3,6,12,24,36\}$ and the relation \leq on set X defined by x divides y then draw the Hass diagram.

UNIT-III

5. Define Group, monoid, semigroups and subgroups with examples.

OR

6. a) Explain pigeonhole principle with example.
b) A certain question paper contains 2 parts A and B each containing 4 questions. How many different ways a student can answer 5 questions by selecting at least 2 questions from each part?

UNIT-IV

7. a) Find the generating function for the following sequence.

$$
\begin{array}{ll}
\text { i) } \quad 1^{2}, 2^{2}, 3^{2}, \ldots \ldots . & \text { li) } 1^{3}, 2^{3}, 3^{3}, \ldots
\end{array}
$$

b) Find the coefficient of x^{20} in $\left(x^{3}+x^{4}+x^{5}+\ldots \ldots . .\right)^{5}$

OR

8. Solve the recurrence relation using generating function. $a_{n}-9 a_{n-1}+20 a_{n-2}=0$, for $n \geq 2$ and $\mathrm{a}_{0}=-3$ and $\mathrm{a}_{1}=-10$.

UNIT-V

9. a) Define a graph and explain various representations of graph with examples.
b) Define Planner graph with examples.

OR
10. Explain kruskals algorithm? .Find Minimum cost spanning tree cost for the following graph.

Code: 5GC33

R-15

|| B.Tech. I Semester Supplementary Examinations March 2021

Probability \& Statistics
 (Computer Science and Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Let X denote the minimum of the two numbers that appear when a pair of fair dice is thrown once. Determine the (i) Discrete probability distribution (ii) Expectation (iii)Variance

OR

2. A card is drawn from a well shuffled pack of cards. What is the probability that it is either a spade or an ace?

UNIT-II

3. The marks obtained in statistics in a certain examination found to be normally distributed. If 15% of the students ≥ 60 marks, 40% of the students >30 marks, find the mean and standard deviation

OR

4. For a normally distributed variate with mean 1 and standard deviation 3 , find the probabilities that (i) $3.43 \leq x \leq 6.19$ (ii) $-1.43 \leq x \leq 6.19$

UNIT-III

5. A research worker wants to determine the average time it takes a mechanic to rotate the tires of a car and he wants to be able to assert with 95%. Confidence that the mean of his sample is of by at most 0.5 minutes. If he can presume from past experience that $\sigma=1.6$ minutes how large a sample will have to take

OR

6. Find 95% confidence limit for the mean of a normality distributed population from which the following sample was taken $15,17,10,18,16,9,7,11,13,14$

UNIT-IV

7. A sample of 400 items is taken from a population whose standard deviation is 10 . The mean of the sample is 40 . Test whether the sample has come from a population with mean 38. Also calculate 95% confidence interval for the population

OR

8. The standard deviation of two samples are $8 \& 12$, samples sizes are 200 and 100 . Find the standard error of the difference between the means and also find the confidence interval at 5% level, Means of the samples are 60,50.

UNIT-V

9. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-A	14.1	10.1	14.7	13.7	14.0
Unit-B	14.0	14.5	13.7	12.7	14.1

OR
10. A pair of dice are thrown 360 times and the frequency of each sum is indicated below:

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significance?

