Hall Ticket Number :						R-15
Code: 5GC33						

II B.Tech. I Semester Supplementary Examinations May 2019

Probability & Statistics

(Computer Science and Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Determine (i) $P(\frac{B}{A})$ (ii) $P(\frac{A}{B^{C}})$ if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(AUB) = \frac{1}{2}$
 - b) Calculate expectation and variance of X, if the probability distribution of the random variable X is given by

Х	-1	0	1	2	3
F	0.3	0.1	0.1	0.3	0.2
		C	DR		

2. Let X denote the minimum of the two numbers that appear when a pair of fair dice is thrown once. Determine the (i) Discrete probability distribution (ii) Expectation (iii) Variance

UNIT–II

- a) A die is thrown 6 times. If getting an even number is a success, find the probabilities of
 (i) at least one success (ii) 3 successes (iii) 4 successes
 - b) If a random variable has a poisson distribution such that P(1) = P(2) find
 - (i) Mean of the distribution
 - (ii) P(4)
 - (iii) P(x 1)
 - (iv) P(1<x<4)

OR

- 4. a) The mean and variance of a binomial variable X with parameters n and p are 16 and 8. Find P(x = 1) and P(x > 2)
 - b) A hospital switch board receives an average of 4 emergency calls in a 10 minute interval. What is the probability that
 - (i) There are at most 2 emergency calls in a 10 minute interval
 - (ii) There are exactly 3 emergency calls in a 10 minute interval

UNIT-III

- 5. a) The mean height of students in a college is 155cms and standard deviation is 15. What is the probability that the mean height of 36 students is less than 157cms
 - b) If we can assert with 95% that the maximum error is 0.05 and P = 0.2 find the sample size

OR

- 6. a) What is the effect on standard error, if a sample is taken from an infinite population of sample size increased from 400 to 900
 - b) What is the maximum error one can expect to make with the probability 0.90 when using the mean of a random sample of size n = 64 to estimate the mean of population with $^2 = 2.56$

UNIT–IV

7. The mean yield of wheat from a district A was 210 pounds with S.D 2.5 inches per acer from a sample of 100 plots. In another district the mean yield was 220 pounds with S.D 12 pounds from a sample of 150 plots. Assuming that the S.D of yield in the entire state was 11 pounds. Test whether there is any significant difference between the mean yield of crops in the two districts

OR

8. If two large populations there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations

UNIT–V

9. The number of automobile accidents per week in a certain community are as follows 12, 8, 20, 2, 14, 10, 15, 6, 9, and 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period

OR

10. The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, Test whether the two populations have the same variance

Unit-A	14.1	10.1	14.7	13.7	14.0				
Unit-B	14.0	14.5	13.7	12.7	14.1				

ŀ	-all -	Ticket Number :												·	
С	ode	e: 5G133	<u> </u>						I	I			_		R-15
Ŭ	ouc	II B.Tech. I	Sem rinc			• •								/ 2019	9
		-		-		er Sci	-		_		-	-			
١		. Marks: 70 Answer all five uni	ts by	chc	osin	g on		estio *****	n fro	m ec	ach i	unit (5 x 14		e: 3 Hours Marks)
							UNI	Г—I							
1.	a)	List and explain v	ariou	s fac	ctors	that i	nflue	nces	on L	angu	age	desig	jn?		
	b)	Describe the app program?	oroacl	n of	usin	g Axi	iomat	tic se	man	tics t	o pro	ove t	he corr	ectnes	ss of a given
_		— — — — — — — — — —					0						•		
2.	a)	Explain different a	•					•		•	•	•			
	b)	Explain syntax of	a "foi	r" sta	atem				using	g BN	F No	tatior	n and S	yntax	graphs?
2	-)	Driefly explain ch	at A		~ ~ ~ ~ ~					ived	no o d			100	
3.	a) Þ	Briefly explain ab		-				nis a		ixeu-	mou	e ass	signmer	115 ?	
	b)	What are the des	ign is	sues		nion	، О	R							
4.	a)	How does C supp	ort R	elati	onal	and I			vnreg	sion	s?				
т.	b)	Define Named co							•			nts?			
	5)	Denne Hamed Co	notai	it. vv	natio						/1510	1101			
5.	a)	What is the ge disadvantages of		-		n wi	th S		Sco	ping?	, Mł	nat a	are the	e adva	antages and
	b)	Define Subprogra	am. W	/hat	are t	he ge	enera O		racte	ristic	s of S	Subp	rogram	s?	
6.	a)	List out the desi Conventional Sub	-			Fun	ctions	s? In	wha	at wa	iys a	ire C	o- rout	ines d	different from
	b)	What are three Se	eman	tic n	node	ls of I	Parar	neter	Pas	sing?	' Illus	trate	with ar	n Exan	nple?
							UNIT	–IV]						
7.	a)	What is Sema Semaphores?	phore	e? (Give	the	sol	ution	for	Pro	oduc	er-Co	onsume	er Pro	oblem using
	b)	What are the diffe	erence	es be	etwe	en a	C++ 1 O		v spe	cifica	ation	and	a Java	throw	s clause?
8.	a)	Write and explain	abou	ut Ex	cept	ion ha	andlir	ng in	C++	with	exam	nples	?		
	b)	Define Concurren	ncy? ∖	What	t are	the th	nree	possi	ble le	evels	of C	oncu	rrency i	n Prog	grams?
							UNIT	-v							
9.	a)	Write and explain	abou	ut va	rious	featu	ures a	and f	unctio	ons u	ised i	in ML	?		
	b)	Explain the diffe discussing how m					-		st se	arch	and	аE	Breadth	-first :	search when
		-		_			0								
0.		State and explain	the [Data	type	s and			es use	ed in	LISF	?			
							*	**							

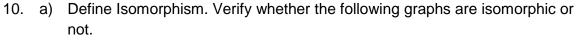
Hall	Tick	et Number :							
Code		R-15							
Coue	. 30	II B.Tech. I Semester Supplementary Examinations May 2019							
		Advanced Data Structures Through C++							
Мах	. Mo	(Common to CSE & IT) arks: 70 Time: 3 Ho	Jrs						
A	Ans∿	ver all five units by choosing one question from each unit (5 x 14 = 70 Marks)							
		UNIT-I							
1.	a)	What are the static class members? Explain each in detail.	9N						
	b)	How access control is provided in C++.	5N						
		OR							
2.	a)	Define class scope. Explain this concept with an example.	7N						
	b)	C++ provides a mechanism in which non-member can have access to private member of a class. Justify?	7N						
		UNIT-II	7 10						
3.	a)	Identify the purpose of operator overloading and demonstrate operator							
		overloading for Unary operator.	7N						
	b)	Define Polymorphism. How virtual function avoids ambiguity in multipath inheritance.	7N						
		OR							
4.	a)	Compare Time and Space complexity. Explain with suitable examples.							
	b)	Demonstrate an abstract class with a suitable C++ program.	7N						
5.	a)	UNIT–III Demonstrate ADT implementation of Stack using C++ program.							
0.			9N						
	b)	Define Hashing. Explain about hash functions.	5N						
c	2)	OR	01						
6.	a) b)	Explain the operations performed on Linear list with suitable examples. Compare Double Hashing and Extendable Hashing.	8M 6M						
	D)		OIV						
7.	a)	Define BST. Demonstrate its operations with suitable examples.	7N						
	b)	Demonstrate Binary Tree Traversal Techniques with algorithms.	7N						
		OR							
8.	a)	Demonstrate Priority Queue implementation using Heaps.	7N						
	b)	Define AVL Tree. Demonstrate its operations with suitable examples	7N						
		UNIT–V							
9.	a)	Demonstrate insertion and deletion operations in B-Tree with example.	8N						
	b)	What is a Red-Black Tree? List its properties.	6N						
10.	a)	OR What is the role of Tries in pattern Matching? What are the different Tries?							
10.	u)	Explain Applications of Tries.	9N						
	b)	Create a Red-Black Tree by inserting the following sequence of numbers:							
		8, 18, 5, 15, 17, 25, 40 and 80.	5N						

			1							1			T		
Hall	Tick	et Number :												D 16	
Code	e: 5 0	431												R-15	
		ll B.Tech. I	Sem									tion	s May	y 2019	
							-	-	-	atic: & IT)	S				
Мах	. Mo	arks: 70			10	- Crim	non			~ ,				Time: 3 Ho	urs
/	Ans∿	ver all five uni	its by	chc	osinę	g on	•	estio *****		meo	ach ı	unit (5 x 14	= 70 Marks)	
							ļ	JNIT	-1						
1.	a)	show that 🗍	(<i>P</i> ∧	Q) -	→ (ヿ I	P V (ך <i>₽</i> ∨	(Q)	⇔ (∏ <i>P</i> \	(Q)				71
	b)	show that (PA	$(\neg q)$	$\wedge R$)v(Q A I	2) V ($(P \land$	R) ⇔	R				71
								OF	R						
2.	a)	Obtain the p	princip	oal c	onjur	nctive	e nor	mal	orm	of the	e sta	teme	ent		
		$(\neg P \rightarrow R) \land$	(Q ↔	→ P)	-										71
	b)	Show that S	SVR is	s a v	alid c	oncl	usior	n of t	he pi	remis	es (I	P∨Q), (P -	R), $(Q \rightarrow S)$	
		using rules of	of Infe	eren	ce.		[71
3.	2)	Dofina tha f	مالمينا	ina a	nd a					loc fr	or oo	ob			
5.	a)	Define the for i. Lattice		ing a	inu y	ive 5	unau		amp		леа	CII			
		ii. Sub lattice	е												
		iii. Complem	nente	d lat	tice										61
	b)	Let n be a p	ositiv	e int	eger	and	S _n b	e the	set	of all	divis	ors	of n. Le	et D denote	
		the relation	of "di	visio	n". D	raw	the d	liagra	ams	of lat	ices	(<mark>S</mark> ",E	D) for r	1=6,8, 24	
		and 30.						~							81
4			. ا جر معر	at c	مامر		ا مار م	OF		. 1	a (* 1 [*]		1! .		
4.	a)	and transitiv	•	or a	relat		wnicr	I IS S	ymm	etric,	anti	symr	netric,	compatibility	71
	b)	Let Z={-2,-1		2,3,	} a	nd R	elati	on R	is de	efined	das				
		R={(x,y)/x-y	is div	/isibl	e by	3} fir	nd th	e rela	ation	s on	Z.				71
							l	INIT-	-111						
5.		Let ({a,b},*)			-						nat i)	a*b=	⊧b*a ii) b*b=a.	71
	b)	Show that e	very	cycli	c gro	up is	abe			Э.					71
								OF							
6.	a)	How many a least one sid		-			here	of th	e se	t{8a,6	3b,7c	:} in v	which '	a' is an at	71
	b)	Prove by pig	-		•	•	that	in a g	grou	o of 6	51 pe	ople,	, at lea	st 6 people	-74
		were born ir	i the s	sam	e mo	ntn.									71

UNIT–IV

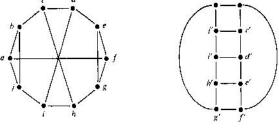
7.	a)	Find the coefficient of x ¹⁸ in the following product	
		$(x+x^2+x^3+x^4+x^5) (x^2+x^3+x^4+)^5$	7M
	b)	Find a generating function for the recurrence relation	
		a_{n+2} – $5a_{n+1}$ + $6a_n$ = 2 where n 0 and a_0 =3. a_1 =7. Hence solve the relation.	7M

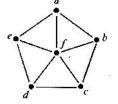
OR

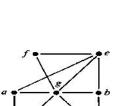

- 8. a) Solve the Recurrence Relation $a_n 7a_{n-1} + 10a_{n-2} = 0$ where $a_0 = 1$ and $a_1 = 41$. 7M
 - b) Solve the Recurrence Relation $a_n 6a_{n-1} + 8a_{n-2} = 3^n$ where $a_0 = 3$ and $a_1 = 7$. 7M

UNIT–V

9. a) Define chromatic number. Find the chromatic number of the following graph.




OR



b) Illustrate Prim's algorithm to find a minimal spanning tree for the weighted graph given below.

7M

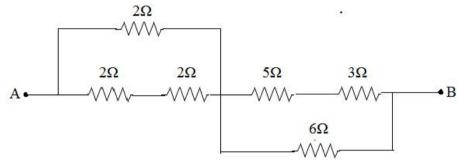
7M

7M

Hall	Tick	ket Number :	
Code	• 5G	R-15	
Couc		II B.Tech. I Semester Supplementary Examinations May 2019	
		Digital Logic Design	
Ma	хM	(Computer Science and Engineering) Narks: 70 Time: 3 Ho	ours
		wer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)	015
		******** UNIT–I	
1.	a)		
		ii) What is reflection code? Give Example	7M
	b)	 Perform the subtraction in Excess-3 code using the 10's complement method: 597-239. 	
		ii) State De Morgan's theorem for three variables	7M
		OR	
2.	a)	i) Prove that $\left(\overline{A + BC}\right) \left(A\overline{B} + \overline{ABC}\right) = \overline{ABC}$.	
	.,	ii) Implement OR Gate using NAND Gates	7M
	b)	i) Reduce the following Boolean expression to 3 literals. [CD' +A]'+ A+CD+AB	
		ii) Perform subtraction using 2's complement: 1100010 - 1100111 UNIT-II	7M
3.	a)		
	,	F(A, B, C, D) = (1, 3, 4, 5, 6, 7, 9, 12, 13)	10M
	b)	Show that the dual of the exclusive-OR is equal to its complement	4M
		OR	
4.	a)	Simplify the following Boolean expressions using K-map and implement them using NAND gates:	
		F(W, X, Y, Z) = XZ + WXY + WXY + WYZ + WYZ.	7M
	b)	Minimize the function $f = \Sigma m(0,2,4,6,7,8,10,12,13,15)$ using K-Map and obtain	
	,	SOP form of it	7M
		UNIT–III	
5.	a) b)	Design 4-bit binary to Gray code converter.	7M
	b)	Implement the function $f(A,B,C) = \Sigma m(0,2,5,7)$ using 4x1 MUX. OR	7M
6.	a)	Implement a full-adder circuit with a decoder and two OR gates.	7M
•	b)	Realize the function $\Sigma m(0,3,5,6,7)$ using 8:1 multiplexer	7M
		UNIT–IV	
7.	a)		
		steps used to convert a J-K flip-flop to a D flip-flop.	7M
	b)	What is difference between latch and flip flop? Explain about clocked RS flip flop using NAND gates	7M
		OR	7 101
8.	a)	With a neat diagram, explain master slave JK Flip Flop	7M
	b)	Explain the operation of universal shift register.	7M
		UNIT-V	
9.	a)	Draw and explain the operation of 4 bit ring counter.	7M
	b)	i) Compare PLA with PROM.ii) What is ROM? List the different types of ROMs	7M
		OR	
10.	a)	Draw and explain 4-bit Johnson counter using D-flip flop.	7M
	b)	Implement the following functions using PLA. $A_{1}(x,y,z) = m(4,2,4,0)$	
		A $(x,y,z) = m (1,2,4,6)$ B $(x,y,z) = m (0,1,6,7)$	
		C(x,y,z) = m(2,6)	7M

Hall Ticket Number :						г					
Code: 5G236	II				<u> </u>		R-15				
II B.Tech. I Semester Supplementary Examinations May 2019											
Electrical Engineering and Electronics Engineering											

(Common to CSE & IT)


Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

UNIT–I

- 1. a) Define the following i) Resistance ii) Inductance iii) Capacitance. Also give the V-I relationship for the above elements.
 - b) Find the equivalent resistance between A & B terminals.

OR

- 2. a) Derive the expression for star to delta transformation.
 - b) Two resistors of each 4 and 2 are connected in parallel across a 10V DC supply. Find the current through each resistor by current division technique.

UNIT–II

- 3. a) Explain the operation of principle of DC generator.
 - b) Derive the expression for Torque in a DC Motor.

OR

- 4. a) Explain the speed control methods of a DC shunt motor.
 - b) Elaborate about Swinburne's test on dc machine.

UNIT–III

A 400V, 10KVA, 3- alternator with star connected stator winding has an effective armature resistance per phase of 1.0 . The alternator generates an open circuit voltage per phase is 90V with a field current of 1.0A. During the short circuit test, with 1.0A of field current the short circuit current flowing in the armature is 15A. Calculate
The synchronous impedance B) Synchronous reactance

OR

- 6. a) Explain the principle of operation of single phase Transformer with neat sketch.
 - b) Explain Torque-Slip Characteristics of a Three phase induction motor.

UNIT–IV

7. Explain the operation of Bridge rectifier with relevant diagrams.

OR

- 8. a) Explain the operation of P-N junction diode mentioning its applications.
 - b) Explain the input and output characteristics of transistor in CE configuration.

UNIT-V

9. Enumerate the applications of dielectric heating and induction heating.

OR

- 10. a) Describe how voltage, current and time period are measured by using CRO.
 - b) List the applications of CRO.