II B.Tech. I Semester Supplementary Examinations May 2018

Advanced Data Structures Through C++

(Common to CSE \& IT)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) With the help of complete C++ programs explain the mechanism of Return-by-value and Return-by-reference of functions.
b) What is an Error and Exception? Explain the exception handling mechanism in C++?
2. a) Define "class" and "object". With an example, explain the concept of data encapsulation and accessing of member elements giving suitable examples.
b) When writing catch operator we can write directly type of exception as a type of its argument, pointer to a type of exception or reference to a type of exception. Compare these approaches.

UNIT-II

3. a) What do you mean by run time polymorphism and how to implement run time polymorphism using virtual functions in C++?
b) What is template? Explain about function templates and class templates with suitable examples.
4. Explain in detail about Exception handling mechanism.

UNIT-III

5. a) What is stack? Write the ADT implementation of stacks using templates in C++.
b) Develop a class for hash table using linear probing and neverUsed concept to handle an erase operation. Write complete C++ code for all the methods. Include a method to reorganize the table when (say) 60% of the empty buckets have never used equal to false. The reorganization should move pairs around as necessary and leave a properly configured hash table in which neverUsed is true for every empty bucket.

OR
6. a) What is a dictionary? Define the abstract data type for it? Write the abstract class for the dictionary?
b) Give the applications of dictionary or dictionary with duplicates in which sequential access is desired.

UNIT-IV

7. a) Write a method to delete the pair with the largest key from a Binary Search Tree.
b) Define a class called binarySearchTree to represent a Binary search tree. Extend this class by adding a public function outputInRange (Low,High) that outputs, in ascending order of key, all elements in a binary search tree whose key lies between Low and High. Use recursion and avoid entering sub trees that cannot possibly contain any elements with keys in desired range.

OR

8. a) Draw the sequence of rotations required to perform a single right rotation and a double LR rotation in an AVL tree?
b) Explain how Priority Queue is Implemented Using Heaps. 7M

UNIT-V

9. a) Explain about the LLr, LRr, LLb, LRb imbalances in a Red-Black tree with example?
b) Does deleting a leaf node from a red-black tree then reinserting the same key always
result in the original tree? Prove it does or given a counter example where it does not.
OR
10. a) What do you understand by the term "Trie"? Differentiate standard Tries and compressed Tries
b) Explain in detail about suffix tries with suitable examples.

II B.Tech. I Semester Supplementary Examinations May 2018

Digital Logic Design and Computer Organization

(Information Technology)
Max. Marks: 70
Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What is a bus? Briefly explain various types of buses used in modern computers.
b) Distinguish between multiprocessor systems and multi computers

OR

2. a) Convert the following numbers into hexadecimal representation
(i) $10101100_{(2)}$
(ii) $76543_{(8)}$ (iii) $9458_{(10)}$
b) Demonstrate n's complement and n -1's complement of a number

UNIT-II

3. a) Minimize the following functions and realize using minimum number of gates.
(i) $\mathrm{F} 1=\sum \mathrm{m}[0,3,5,6,9,10,12,15]$
(ii) $\quad \mathrm{F} 2=\sum \mathrm{m}[0,1,2,3,11,12,14,15]$
b) Why is NOR gate a universal gate?

OR

4. Implement the following multi output combinational logic circuit using a 4-to-16 line decoder.
$\mathrm{F} 1=\sum[1,2,4,7,8,11,12,13]$
$\mathrm{F} 2=\Sigma[2,3,9,11]$

UNIT-III

5. a) With the help of an example demonstrate division operation on floating point numbers.
b) List various logic operations and construct a circuit to perform these operations.

OR

6. a) Differentiate between big endian and little endian assignments
b) What are the various addressing modes used by computer system? Explain them with example instructions.

UNIT-IV

7. a) Formulate the control sequence for execution of the instruction ADD (R3), R1 on a processor with single bus organization of data path.
b) Describe micro instruction-sequencing organization. 7M

OR

8. a) Compile the organization of a $2 \mathrm{M} \times 32$ memory module using $512 \mathrm{~K} \times 8$ static memory chips.
b) Illustrate the effect of associative-mapped technique for cache memory

UNIT-V

9. a) How program controlled I / O is performed using polling?
b) Given that different devices are likely to require different interrupt-service routines, how can
the processor obtain the starting address of the appropriate routine in each case? OR
10. a) Construct a general 8-bit parallel interface circuit. 8M
b) Examine how devices are addressed on the universal serial bus.

II B.Tech. I Semester Supplementary Examinations May 2018
 Discrete Mathematics

(Common to CSE \& IT)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) show that RVS fc ow s , yic $C \vee D,(C \vee D) \rightarrow \sim H, \sim H \rightarrow(A \wedge \sim B),(A \wedge \sim B) \rightarrow R \vee S$
 implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$

OR

2. a) Without truth table prove that $\sim_{0 \rightarrow 2}^{c \infty}$

Let $\begin{gathered}A=\left\{(1, a),(1, b),(2, b),(a, c),\left(, b^{2}, b\right),(4, a), \text { and } S=\left\{(1, b),(2, c),\left({ }^{3}, b\right),\left({ }^{\mathfrak{1}}, b\right)\right\}\right.\end{gathered}$ Cornpute (i) complement of F (ii) $R \cup S$ (iii) $R \cap S$ (iv) $R-1$.

OR

4. a) Write the properties of group
b) Draw the Hasse diagram of (X, \leq), where X is the set of positive divisions of 45 and the relation R is such that $R=\{(x, y) ; x \in A, y \in A$ and (x divides $y)\}$

UNIT-III

5. a) In how many ways can a committee of 8 is to be formed from 10 women and 12 men, if the committee should contain
(i) equal number of men and women.
(ii) at least 3 women.
b) n couples are attending the party with the following assumptions
i. A wife can attend the party without her husband
ii. A husband cannot attend the party without his wife.

How many different gatherings are possible in the party?

OR

6. a) A bag contains 10 red marbles, 10 white marbles, and 10 blue marbles. What is the minimum no. of marbles you have to choose randomly from the bag to ensure that we get 4 marbles of same color?
b) A box contains 6 red, 8 green, 10 blue, 12 yellow and 15 white balls. What is the minimum no. of balls we have to choose randomly from the box to ensure that we get 9 balls of same color?

UNIT-IV

7. a) What is generating function, sequence, recurrence relation, formal power series with an examples?
b) Find a coefficient of X^{21} in the following expression: $\begin{aligned} & \text { than }+x^{2}+x^{4}+x^{5}+x^{2} \\ & x^{2}+\infty\end{aligned} \quad 8 \mathrm{M}$

OR

8. a) Solve \qquad 9 in the to ith h^{\sim}
 an = $=6$ using recurrence relation.

UNIT-V

9. a) Define Euler graph, Eulerian path, Hamiltonian graph and Hamiltonian path. Give an example of a graph which is
i. Eulerian but not Hamiltonian
ii. Hamiltonian but not Eulerian
iii. Both Eulerian and Hamiltonian
iv. Non Eulerian and non Hamiltonian.
b) Define planar graph. Is the complete graph K4 planar? Prove that if G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

OR

10. a) Show that $\mathrm{K} 4,4$ is non planar?
b) Determine whether the graphs G and H are isomorphic?

8M
\square

II B.Tech. I Semester Supplementary Examinations May 2018

Electrical Engineering and Electronics Engineering

(Common to CSE \& IT)

Max. Marks: 70

UNIT-I

Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

1. a) State and explain the Kichhoff's laws
b) Three resistances 2,5 and 10 are connected in series across a supply voltage of 25 Volts. Calculate
(i) Total current supplied (ii) Voltage across each resistor

OR

2. a) Derive expression for equivalent capacitance when three capacitors of capacitances of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are connected in series
b) Three inductances 10,20 and 30 are connected in a delta connection. Find the equivalent star connection

UNIT-II

3. a) Derive the EMF equation of DC generator

6 M
b) A 4 pole generator having 51 slots with each slot containing 20 conductors. The machine is driven at 1500 rpm and assuming the flux per pole to be 7.0 mWb . What will be the voltage generated in machine when the armature winding is (i) Lap connected (ii) Wave connected.

OR

4. a) What is meant by starter and explain the principle of operation of three point starter
b) What are the different types of speed control methods and explain any one of the speed control methods in detail

UNIT-III

5. a) Explain the principle of operation of single phase transformer with a neat diagram
b) A 250 KVA single phase transformer has iron losses of 1.8 KW and full load copper losses is 200 watts. Calculate
(i) Efficiency at full load at 0.8 p.f lagging
(ii) Efficiency at half load at 0.8 p.f leading
(iii) Maximum efficiency at 0.8 p.f lagging

OR
6. a) Explain the principle of operation of alternator with a neat sketch 7 M
b) Draw and explain the slip-torque characteristics of three phase induction motor

UNIT-IV

7. a) With a neat circuit diagram explain the principle of operation of full wave diode bridge rectifier along with its input and output waveforms 8M
b) What is meant by rectifier and list it's applications 6M
OR8. a) Explain the following
(i) PNP transistor (ii) NPN transistor 7M
b) Draw the frequency response of CE amplifier and explain 7M
UNIT-V
8. Explain about different types of electric heating and mention its industrial applications 14M
OR
9. a) Draw and explain the principle of CRT 7M
b) Explain the following(i) Voltage measurement of CRO(ii) Frequency measurement of CRO7M
\squareHall Ticket Number :
Code: 5GC34
R-15
II B.Tech. I Semester Supplementary Examinations May 2018
Environmental Science(Common to ECE \& IT)
Max. Marks: 70 Time: 3 Hours
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$
UNIT-I1. a) What is the need for studying Environmental issues?7M
b) what are two main causes of the Environmental crisis 7M
OR
10. a) Describe the important components of the Environment. 7M
b) What is the role of public \& institutions in protecting the Environment 7M
UNIT-II
11. a) With a help of case study explain the effects of extracting mineral resources 7M
b) Express role of an individual in the conservation of natural resources. 7M
OR
12. a) Explain how almost every source of energy has its limits 7M
b) Outline the importance of land as a natural resource. predict the serious effect of water logging and soil salinity 7M
UNIT-III
13. a) Explain the types and characteristic features of
i) Grass land ecosystem ii) Aquatic ecosystem 7M
b) Outline nutrient cycles i) bio geo chemical cycle ii) nitrogen cycle 7M
OR
14. a) Summarize the values of Biodiversity 7M
b) How to conserve biodiversity? 7M
UNIT-IV
15. a) Explain the causes, sources and effects of marine pollution 7M
b) Explain the causes, sources and effects of outdoor air pollution 7M
OR
16. a) Explain causes, effects and control measures of urban solid wastes. 7M
b) What is thermal pollution? How is it controlled? 7M
UNIT-V
17. a) Explain the practice of rain water harvesting. 7M
b) Write a note on i)wet land reclamation ii) Acid rain 7M
OR
18. a) Summarize the salient features of the wild life protection act? 7M
b) Write a note on value based education in relation to environment. 7M

II B.Tech. I Semester Supplementary Examinations May 2018

Operating Systems and Linux Administration

OR

6. a) Illustrate the page-replacement algorithms i) LRU ii) LRU-Approximation Page
Replacement use the reference string $7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0$,
$1,7,0,1$ for a memory with three frames.
b) Discuss the Hierarchical Paging structure. 6M

UNIT-IV

7. a) Explain in detail about various ways of accessing disk storage. 10M
b) Explain single contiguous memory management technique with advantage
and disadvantages.

OR
8. a) Explain the various methods for free-space management. 10 M
b) Briefly explain the indexed allocation method. 4 M

UNIT-V

9. a) Explain in detail about the system administration of LINUX system 7M
b) Explain in detail about I/O in LINUX system. 7M

OR
10. a) Explain in detail about setting up a LINUX multifunction server. 7M
b) Illustrate the procedure for setting XEN on LINUX host and adding guest OS. 7M

