Code: 7G631

|| B.Tech. I Semester Supplementary Examinations February 2022

Building Materials and Construction

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about the properties of a good building stone? 7 M
b) List out the precautions to be taken in blasting? 7M

OR
2. a) Explain in details about the classification of stones with examples.
b) List the properties to be considered before selecting a stone for building?

UNIT-II

3. a) Explain in detail about the different types of tiles and its purpose.
b) Describe about Glass, bitumen, alumina and its uses? 7M

OR

4. a) Briefly explain the constituents of lime stones. 7M
b) Classify lime and explain its uses in different Civil Engineering Projects.

UNIT-III
5. a) Briefly explain the structure and parts of timber?
b) Describe the properties of good timber?

OR

6. a) Classify and describe knots found in timber based on size and quality? 8 M
b) Write a short note on methods for determination of moisture content in timber. 6M

UNIT-IV

7. a) Differentiate between English bond and Flemish bond?
b) Explain the essentials of a good foundation?

OR

8. a) Distinguish between Stretcher and Header bonds?
b) Explain mat foundation and the situations where mat foundation is essential.

UNIT-V

9. a) Discus different types of floors and roofs with uses 7M
b) Explain about different water proofing materials used? 7M

OR

10. a) Explain the following items in case of staircases
(i) soffit
(ii) Handrail
(iii) pitch
(iv) Rise and Tread
b) With the help of a neat diagram explain the components of stair case

Code: 7GC32

|| B.Tech. I Semester Supplementary Examinations February 2022

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ determine $y(0.1)$ correct to four decimal places.
b) Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

OR

2. Find a real root of the equation $3 x=\cos x+1$ by Newton-Raphson's method correct to four decimal places.

UNIT-II

3. a) Using Newton's forward interpolation formula and the given table of values

X	1.1	1.3	1.5	1.7	1.9
$F(x)$	0.21	0.69	1.25	1.89	2.61

Obtain the value of $f(x)$ when $x=1.2$
b) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

OR

4. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
y	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=6$

UNIT-III

5. Form the partial differential equation by eliminating the arbitrary constants $x^{2}+y^{2}+(z-c)^{2}=a^{2}$
6. a) Form a partial differential equation by eliminating the arbitrary functions from $z=f(x+a t)+g(x-a t)$.
b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=\left(z^{2}-x y\right)$

UNIT-IV

7. a) Find the Fourier series to represent $f(x)=\pi x$ in $0 \leq x \leq 2$
b) Find the half range cosine series for the function $f(t)=t-t^{2}$, in $0<t<1$

OR

8. a) Find the Fourier series to represent $f(x)=|x|$ when $-\pi<x<\pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
b) Find the half range cosine series for the function $f(x)=x$, when $0<x<\pi$ hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

UNIT-V

9. a) Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.
b) Find the Fourier transform of $f(x)$ given

$$
\text { by } f(x)=\left\{\begin{array}{l}
1, \text { for }|x|<1 \\
0, \text { for }|x|>1
\end{array} \text { hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} d x\right.
$$

OR

10. Find the finite Fourier sine and cosine transforms of $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{c}
1,0<x<\frac{\pi}{2} \\
-1, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

Code: 7G537

II B.Tech. I Semester Supplementary Examinations February 2022

Electrical and Mechanical Technology

(Civil Engineering)
Time: 3 Hours
Max. Marks: 70
Answer all five units by choosing one question from each unit ($5 \times 14=70 \mathrm{Marks}$)
Use separate booklets for Part-A \& Part-B

PART-A

Marks CO | Blooms |
| :---: |
| Level |

UNIT-I

1. a) State and explain Kirchhoff's laws with examples.
b) Find the currents I_{a} and I_{b} the following circuit. What is the total power loss in the circuit?

OR

2. a) Explain the Principle of Operation of DC Generator.
b) A 4-pole wave connected DC generator having 60 slots on its armature with 6 conductors per slot, run at 750 rpm and generate an open circuit voltage of 230V. Find the useful flux per pole.

UNIT-II

3. a) Explain the Principle of operation of 1-ø Transformers 7M
b) Write short notes on open circuit and short circuit tests on 1-ø Transformer.

OR

4. a) Explain the Principle of operation of 3- \varnothing Induction motor. Expression for Torque
b) Define and explain slip of 3-phase induction motor. Calculate the synchronous speed, slip and rotor frequency of a 3-phase $50 \mathrm{~Hz}, 4$-pole induction motor running at 1440 rpm .

PART-B

UNIT-III

5. a) What is the purpose of a shielding gas in a TIG welding? Explicate the TIG welding process with the help of a neat sketch.
b) Sketch and explain various types of flames used in oxyacetylene welding process.

OR

6. a) Explain the principle of an arc welding. Give the list of equipment's required in general for electric arc welding.
b) Describe MIG welding process stating its advantages and limitations.

UNIT-IV

7. a) Explain briefly various types of lubrication systems.
b) Explain the principle of air compressor and discuss the working of a multi-stage reciprocating air compressor.

OR

8. a) Classify I.C. engines. Explain the working principle of a four stroke SI engine with a neat diagram.
b) Explain the working principle of a single stage reciprocating air compressor.

UNIT-V

9. a) Define a refrigerant. Can water be used as a refrigerant? Justify.
b) Discuss the importance of boiling and freezing point of $R-11$, $\mathrm{R}-12, \mathrm{R}-22, \mathrm{R}-717$ and $\mathrm{R}-13$ refrigerants with reference to their applications.

OR

10. a) Define air-conditioning. Explain room air-conditioning system with a neat sketch.
b) Describe vapour absorption refrigeration system with a flow diagram. Also compare it with vapour compression refrigeration system.

Code: 7G632

|| B.Tech. I Semester Supplementary Examinations February 2022
Fluid Mechanics
(Civil Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit (5×14 = 70 Marks)
$* * * * * * * * *$

UNIT-III

5. Derive an expression for coefficient of discharge by using venture meter with neat sketch.

OR

6. a) Derive an expression for the discharge over a triangular notch.
b) During an experiment 95 litres of water is flowing over a right angled notch was collected in two minutes. If the head of the still is 4 cm , determine the coeffient of discharge of the notch.

UNIT-IV

7. a) Explain about Reynolds Experiment with the help of a neat sketch. 8 M
b) Write the characteristics of the laminar and turbulent flows .

OR

8. The two reservoirs with surface level difference of 20 m are to be connected by 1 m dia pipe 6 km long. Calculate the discharge when a cast iron pipe of roughness $\mathrm{k}=0.3 \mathrm{~mm}$ is used. What will be the percentage increase in discharge if cast iron pipe were to be replaced by steel pipe of roughness $k=0.1 \mathrm{~mm}$. neglect local losses

UNIT-V

9. Explain the geometric, kinematic and dynamic similarities.

OR

10. a) Define the terms: model, prototype, model analysis, hydraulic similitude
b) A $1 / 50$ model of spillway was made and test was conducted with a water flow rate of $3 \mathrm{~m}^{3} / \mathrm{s}$. The water velocity was found to be $2 \mathrm{~m} / \mathrm{s}$. Estimate the water flow rate and velocity of the prototype.

II B.Tech. I Semester Supplementary Examinations February 2022

Strength of Materials

(Civil Engineering)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks co $\underset{* * * * * * * *}{\substack{\text { Blooms } \\ \text { Level }}}$

1. Formulate the relationship between shear modulus, bulk modulus and elastic modulus \& Also Explain the stress strain relation for mild steel

14M CO1

OR

2. A bar of 30 mm in diameter was subjected to a tensile load of 55 kN and the measured extension on 350 mm gauge length was 0.15 mm and change in diameter was 0.0036 mm . Calculate Poisson's ratio and values of three elastic modulii.

14M CO1

UNIT-II

3. A beam of span 6 m which is simply supported at its edges subjected to concentrated loads of 10 KN and 20 KN at a distance of 2 m and 5 m respectively from left support, with an overhanging span of 2 m from its right support subjected to UDL of $2 \mathrm{KN} / \mathrm{m}$ at its overhanging span. Determine the maximum bending moment and shear force.

OR

4. A Cantilever 2 m long carries a uniformly varying load of zero at its free end to maximum of $20 \mathrm{kN} / \mathrm{m}$ at fixed end. Draw shear force and bending moment diagrams for the cantilever.

14M CO2

UNIT-III

5. Write down the assumptions of simple bending theory derive the Equation of simple bending Theory

OR

6. Define section modulus. What is its value for a hollow pipe with external and internal diameters as ' D ' and ' d '

> UNIT-IV
7. Derive the expression for the maximum deflection of a simply supported beam loaded with a central point load using Mohr's theorem.

OR

8. A cylindrical shaft of diameter made of steel of yield strength 250 MPa is subjected to static load consisting of bending moment of $10 \mathrm{kN} . \mathrm{m}$ and a torsional moment of $25 \mathrm{kN} . \mathrm{m}$. Determine the diameter of the shaft using (i) maximum principal stress theory, (ii) maximum shear stress theory and (iii) maximum distorsion energy theory. Take $\mathrm{E}=200 \mathrm{GPa}$. Poisson;s ratio $=0.25$ and factor of safety $=2$.

UNIT-V

9. State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure.

14M CO5

OR

10. Draw \& Explain Morh's circle when a body is subjected to two mutually perpendicular principal stresses which are unequal \& Unlike.

14M CO5

