	Ha	all Ticket Number :	7
	Co	R-17	
	00	II B.Tech. I Semester Supplementary Examinations February 2022	
		Building Materials and Construction	
	• •	ax. Marks: 70 (Civil Engineering) Time: 3 Hours	
		nswer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
		UNIT–I	Marks
1.	a)	Explain about the properties of a good building stone?	7M
	b)	List out the precautions to be taken in blasting?	7M
		OR	
2.	a)	Explain in details about the classification of stones with examples.	7M
	b)	List the properties to be considered before selecting a stone for building?	7M
		UNIT-II	
3.	a)	Explain in detail about the different types of tiles and its purpose.	7M
	b)	Describe about Glass, bitumen, alumina and its uses?	7M
		OR	
4.	a)	Briefly explain the constituents of lime stones.	7M
	b)	Classify lime and explain its uses in different Civil Engineering Projects.	7M
5	a)	UNIT-III Briefly explain the structure and parts of timber?	7M
5.	b)	Describe the properties of good timber?	7M
	0)	OR	7 1 1
6.	a)	Classify and describe knots found in timber based on size and quality?	8M
	b)	Write a short note on methods for determination of moisture content in timber.	6M
		UNIT–IV	
7.	a)	Differentiate between English bond and Flemish bond?	7M
	b)	Explain the essentials of a good foundation?	7M
_		OR	
8.	a)	Distinguish between Stretcher and Header bonds?	7M
	b)	Explain mat foundation and the situations where mat foundation is essential.	7M
Q	a)	UNIT-V Discus different types of floors and roofs with uses	7M
9.	a) b)	Explain about different water proofing materials used?	7M
	0)	OR	7 1 1
10.	a)	Explain the following items in case of staircases	
2.	- 7	(i) soffit (ii) Handrail (iii) pitch (iv) Rise and Tread	8M
	b)	With the help of a neat diagram explain the components of stair case	6M

Hall Ticket Number :

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations February 2022

Engineering Mathematics-III

(Common to All Branches)

Max. Marks: 70

- 1. a) Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, y(0) = 1 determine y(0.1) correct to four decimal places.
 - b) Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places. 7M

OR

2. Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places.

3. a) Using Newton's forward interpolation formula and the given table of values

Х	1.1	1.3	1.5	1.7	1.9				
F(x)	0.21	0.69	1.25	1.89	2.61				

Obtain the value of f(x) when x = 1.2

b) Find the first and second derivatives of the function tabulated below at the point x = 1.5

Х	1.5	2.0	2.5	3.0	3.5	4.0					
У	3.375	7.0	13.625	24.0	38.875	59.0					
OR											

7M

14M

4. The following table of values of x and y is given.

x	0	1	2	3	4	5	6
у	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x=6

UNIT-III

5. Form the partial differential equation by eliminating the arbitrary constants $x^2 + y^2 + (z-c)^2 = a^2$ 14M

7M

Time: 3 Hours

R-17

7M

6. a) Form a partial differential equation by eliminating the arbitrary functions from z = f(x+at) + g(x-at). 7M

b) Solve
$$(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$$
 7M

UNIT-IV 7. a) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$ 7M

b) Find the half range cosine series for the function $f(t) = t - t^2$, in 0 < t < 1 7M

OR

8. a) Find the Fourier series to represent f(x) = |x| when -f < x < f and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ 7M

b) Find the half range cosine series for the function f(x) = x, when

$$0 < x < f_{\text{hence show that } \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}}$$
UNIT-V

9. a) Find the Fourier cosine transform of $f(x) = e^{-ax} (x > 0, a > 0)$. 7M

- b) Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, for |x| < 1 \\ 0, for |x| > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ OR OR 7M
- 10. Find the finite Fourier sine and cosine transforms of f(x) defined by

$$f(x) = \begin{cases} 1, 0 < x < \frac{f}{2} \\ -1, \frac{f}{2} < x < f \end{cases}$$
14M

	Н	all Ticket Number :		
			R-1	7
	C	L II B.Tech. I Semester Supplementary Examinations Februar	v 2022	
		Electrical and Mechanical Technology	<i>y 2022</i>	
		(Civil Engineering)		
			Time: 3 I	
	Ar	nswer all five units by choosing one question from each unit (5 x 14 Use separate booklets for Part-A & Part-B	= 70Mar	KS)

		PART-A		
			Marks	CO BI
		UNIT–I		L
1	a)	State and explain Kirchhoff's laws with examples.	714	
			7M	
	b)	Find the currents I_a and I_b the following circuit. What is the total power loss in the circuit?	;	
		$27 V_{T}$ 2Ω 5Ω $\downarrow 0\Omega$		
		25 4	7M	
		OR	,	
2.	a)	Explain the Principle of Operation of DC Generator.	7M	
	b)	A 4-pole wave connected DC generator having 60 slots on its	6	
		armature with 6 conductors per slot, run at 750 rpm and		
		generate an open circuit voltage of 230V. Find the useful flux	K	
		per pole.	7M	
		UNIT–II		
3.	a)	Explain the Principle of operation of 1-ø Transformers	7M	
	b)	Write short notes on open circuit and short circuit tests on 1-a	5	
	,	Transformer.	7M	
		OR		
4.	a)	Explain the Principle of operation of 3- ø Induction motor		
		Expression for Torque	7M	
	b)	Define and explain slip of 3-phase induction motor. Calculate		
	~)	the synchronous speed, slip and rotor frequency of a 3-phase		
		50 Hz, 4-pole induction motor running at 1440 rpm.	, 7M	
		,		

PART-B

UNIT–III

5. a)	What is the purpose of a shielding gas in a TIG welding? Explicate the TIG welding process with the help of a neat	
	sketch.	7M
b)	Sketch and explain various types of flames used in oxy- acetylene welding process.	7M
	OR	
6. a)	Explain the principle of an arc welding. Give the list of equipment's required in general for electric arc welding.	7M
b)	Describe MIG welding process stating its advantages and limitations.	7M
	UNIT-IV	
7 a)	Explain briefly various types of lubrication systems.	7M
b)		7 111
0)	Explain the principle of air compressor and discuss the working of a multi-stage reciprocating air compressor.	7M
	OR	7 111
8. a)	Classify I.C. engines. Explain the working principle of a four stroke SI engine with a neat diagram.	7M
b)	Explain the working principle of a single stage reciprocating	
	air compressor.	7M
	UNIT–V	
9. a)	Define a refrigerant. Can water be used as a refrigerant? Justify.	7M
b)	Discuss the importance of boiling and freezing point of R-11, R-12, R-22, R-717 and R-13 refrigerants with reference to their applications.	7M
	OR	
10. a)	Define air-conditioning. Explain room air-conditioning system with a neat sketch.	7M
b)	Describe vapour absorption refrigeration system with a flow	
,	diagram. Also compare it with vapour compression refrigeration system.	7M

	Ha	all Ticket Number :												Г				7
	Со	ode: 7G632								1		1	1			R-17	7	
		II B.Tech. I Se	mes	ster	Sup	pler	nen	tary	Exc	ımin	atic	ns F	ebr	υa	ry 20	022		
							-	echo		-								
	• •	lax. Marks: 70			(Civi	l Eng	gine	ering)					Tim	e:3⊦	Jours	
		nswer any five full qu	vestic	ons b	y ch	oosii	-	ne q	uesti	on fr	om e	each	unit	(5)				
																		Marks
						UNI	T–I											
1.		State Pascal's law.	Deriv	e th	e equ	uatio	n for	the s	same	•								14M
						0												
2.		A hot plate of area parallel plate 1mm viscosity 0.001 N-s	dista	ant f	rom	it the	e spa	ace b	betwe	een t	the p	lates	s cor	ntai	ning	water	r of	
		calculate power req							J				-					14M
						UNI	T—II											
3.		Define and distingu	ish be	etwe	en st	trean	n line	, pat	h line	e anc	l stre	ak lir	ne.					14M
						0												
4.	a)	State the Bernoulli's						•										6M
	b)	The diameters of a the discharge throus section 1 is 6m/s. D	ugh t	the p	oipe	if th	e ve	locity	/ of	wate	r flo			•		•		8M
							[1										
5.		Derive an expressi sketch .	ion fo	or co	oeffic	ient	of d	ischa	arge	by u	ising	ven	ture	me	eter N	with n	eat	14M
						0												
6.	a)	Derive an expression				Ŭ			Ŭ									7M
	b)	During an experime collected in two min discharge of the not	utes.						-		•	•						7M
		Ũ				UNIT	IV–IV											
7.	a)	Explain about Reyn	olds	Expe	erime	ent w	ith th	e he	lp of	a ne	at sk	etch.						8M
	b)	Write the characteri	stics	of th	ne lar	ninai	r and	turb	ulent	flow	s.							6M
						0	R											
8.		The two reservoirs pipe 6km long. Calc used. What will be	culate the	e the perc	disc entaç	harg ge in	e wh crea	en a se in	cast disc	iron charg	pipe je if	of ro cast	ough iron	nes	s k=	0.3mn	n is	
		replaced by steel pi	pe of	rou	_			nm .	negle	ect lo	ocal lo	osse	S					14M
•		– 1 · <i>a</i>				UNI			,	.,.								
9.		Explain the geomet	ric, ki	inem	atica	and o O	•	mic s	simila	rities	.							14M
10.	a)	Define the terms: m	odel,	prot	totyp	e, m	odel	analy	/sis,	hydra	aulic	simil	itude	Э				6M
	b)	A 1/50 model of spi 3m ³ /s. The water ve velocity of the proto	elocity	y wa														8M
							*	**										

	Code: 7G633	R-1	7	
	II B.Tech. I Semester Supplementary Examinations February	/ 2022		
	Strength of Materials			
	Answer any five full questions by choosing one question from each unit (5x1	ime: 3 4 = 70 N		
	*****	Marks	со	Blooms Level
	UNIT_I			
1.	Formulate the relationship between shear modulus, bulk modulus and elastic modulus & Also Explain the stress strain relation for mild steel OR	14M	CO1	B2
2.	A bar of 30mm in diameter was subjected to a tensile load of 55kN and the measured extension on 350mm gauge length was 0.15mm and change in diameter was 0.0036mm. Calculate Poisson's ratio and values of three elastic modulii.	14M	CO1	B3
	UNIT–II			
3.	A beam of span 6m which is simply supported at its edges subjected to concentrated loads of 10KN and 20KN at a distance of 2m and 5m respectively from left support, with an overhanging span of 2m from its right support subjected to UDL of 2KN/m at its overhanging span. Determine the maximum bending moment and shear force.	14M	CO2	B1
4.	A Cantilever 2 m long carries a uniformly varying load of zero at its free end to maximum of 20kN/m at fixed end. Draw shear force and bending moment diagrams for the cantilever.	14M	CO2	B4
5.	Write down the assumptions of simple bending theory derive the Equation of simple bending Theory	14M	CO3	B1
c	OR Define contian modulus. What is its value for a hollow nine with external and			
6.	Define section modulus. What is its value for a hollow pipe with external and internal diameters as 'D' and 'd'	14M	CO3	B1
7.	Derive the expression for the maximum deflection of a simply supported beam loaded with a central point load using Mohr's theorem.	14M	CO4	B1
8.	A cylindrical shaft of diameter made of steel of yield strength 250MPa is subjected to static load consisting of bending moment of 10kN.m and a torsional moment of 25kN.m. Determine the diameter of the shaft using (i) maximum principal stress theory, (ii) maximum shear stress theory and (iii) maximum distorsion energy theory. Take E=200GPa. Poisson;s			
	ratio=0.25 and factor of safety =2.	14M	CO4	B4
9.	State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure.	14M	CO5	B3
0.	Draw & Explain Morh's circle when a body is subjected to two mutually perpendicular principal stresses which are unequal & Unlike.	14M	CO5	B1