		Hall Ticket Number :													_		
	(Code: 7G632		J	<u> </u>			l	-		1	-				R-	17
		II B.Tech. I Sen	neste	er Su				•			ıtior	is M	lai	ch/	/Apı	ril 202	23
							l Me	_									
		Max. Marks: 70 Answer any five full qu	Jestic	ons b		•	_				om	eacl	hι	ınit (3 Hours Marks)
																	Marks
1.		A tank is constructed shown below fig. manometer is attack reading h if specific respectively.	The ned t	tank o its	con bott	tains om a	nders s oil, as sh	wa nown	ter a	and ow. (glyc Calc	erin ulate	ar th	nd a	a me	ercury mete	/ r
					Onl Water weerine	x—	1.8 2 n 1.5 2 r	n i m	∆h y								
)R									14M
2.		State Pascal's law. D	erive	e the	equa	ation			ame.								14M
					•			IT–II									
3.		Define and distinguis	sh be	twee	n str	eam		•	line	and	strea	ak lin	ne.				14M
4.		OR State the momentum equation. Explain how we will apply momentum equation for determining the force exerted by a flowing liquid on a pipe bend.											r 14M				
5.		Derive Darcy-Weisba	ach e	quat	ion f	or tur	bule	IT-III nt flo DR									14M
6	a)	Classify the various t	vnes	of o	rifice	?	•	JΚ									6M
0.	b)	•	٠.				in a t	ank.	The	wate	r lev	el or	n o	ne s	side (of the	Olvi
	,	orifice is 1 m above to other side of the orifice.	he to	p ed	ge o	f the	orific rge t	e an	d 0.5 gh th	m b	elov	the	to	p ed	dge o		8M
7.	a)	Explain about Reyno	lds E	xper	imer	nt wit	h the	help	of a	nea	t ske	tch.					8M
	b)	Write the characteris	tics c	of the	lam	inar	and t	urbu	lent f	lows	5.						6M
								R									
8.		The two reservoirs we dia pipe 6km long. k=0.3mm is used. Verified were to be replaced to the servoirs were to be replaced to the servoirs with the servoirs were to be replaced to the servoirs with the servoirs were to be replaced to the servoirs with the servoir wi	Calci Vhat	ulate will l	the ce th	disc ne pe	harge ercen of rou	e wh tage	incr	cas ease	st irc	n pi disch	pe nar	of i	roug if cas	hness st iror	5
9.	a)	Define the terms: mo	del,	oroto	type	, mo				ydra	ulic	simili	itu	de			6M
	b)		lway veloc	was	mad	le an	d tes	st wa	s coi	nduc	ted v	with	a١	wate			
			, ,				C	R									J
10.	a)	Explain distorted and	d und	istor	ted n	node	ls.										6M
	b)	Water is flowing throw velocity of oil flowing similarity is satisfied	ı in a	noth	er pi	pe of	f diar	netei	r 10	cm if	the	con	diti	on c	of dy	namic	;
		as 0.01 poise and 0.0				•	•			•						-	8M

	Hall Ticket Number :												
	Code: 7G633	<u>.</u>					•			R	2-17		
	II B.Tech. I Semester Sup	plem	entc	ary E	xan	nina [.]	tions	M	arch/	'April 2	023		
	S	treng	th o	f Mo	ater	ials							
		(Civi	I Eng	ginee	ering)							
	Max. Marks: 70				,.				/		: 3 Hou		
	Answer any five full questions by	choosi		1e qı ****	Jesti	on tro	om e	ach	unit (5x14 = /	0 Marks	5)	
											Marks	СО	BL
			JNIT-				_						
1.	A steel tie rod 20 mm diameter is and internal diameter of 24 mm with rod is tightened and the assembly temperature of the assembly is now in the rod and the tube. Take E c=18x10 ⁻⁶ / °C	h the holy is s w raised	elp of ubjec d to 8	was ted t 0°C.	hers to a Dete	and i tensi rmine	nuts. ile lo e the	The ad o	nut or of 20k Iltant s	n the tie N. The stresses	14M	1	B1
	c=10x10 / G		OR								1-111	ı	וט
2.	Define stress and explain the difference		_								14M	1	В4
3.	Draw the shear force & bending				for	the s	imply	sup	porte	d beam			
	carrying a central point load.										14M	2	B4
4.	Draw shear force and bending more salient values on them. Comment of		•				shov	n b	elow. I	Mark all			
		164	N I	3kN									
	A ZkN/m	D	-	E		В							
	1-4m	-+-	2 m →		m .		1				4 4 1 4 4	0	D.4
		11	NIT–I				1				14M	2	B4
5.	A beam of size 150 mm wide, 250				es a	unifoi	mly (distri	buted	load of			
	w kN/m over entire span of 4 m. A												
	1.2m from the left support. If the		•		at a	sectio	on 1.	8 m	from	the left		_	
	support is not to exceed 3.25 N/mm	12 find th		ad w							14M	3	B1
6.	Derive the expression for the shear	· etreee	OR in cire	cular	secti	on of	radiı	ıs R	& also	n derive			
0.	the maximum & average shear stre			odidi	0000	011 01	radic	<i>1</i> 0 1 0	a alo	3 donvo	14M	3	B1
	G		NIT-I	V									
7.	A simply supported beam of span 8		•	_	•								
	in addition to self-weight of 3 kN/	m. Dete	ermin	e the	max	kimur	n slo	pe a	and m	aximum	4 4 1 4	4	D.4
	deflection. Take EI = 1×10^7 kN-m		OR								14M	4	B4
8.	Obtain an expression for normal an	d tange		stres	ses o	n an	inclin	ed r	lane v	vhen an			
	element subjected to bi-axial direct	•											
	stress and their direction										14M	4	B4
0	A section with the best of a section of the		NIT-		!! -	-1		001	1/ 3				
9.	A rectangular block of a material is plane and a tensile stress of 47N/	-											
	with a shear stress of 63N/ mm ²		•		_	•				•			
	principal stresses ii) the orientatio		•				•		•				
	stress. Use analytical method only.										14M	5	B4
10	Derive the everyoning for monitoring	. mpin =!-	OR ol otro	nin 41-	00						4 4 8 4	_	D4
10.	Derive the expression for maximum	princip	aı stra	ain th	eory						14M	5	B1

	На	all Ticket Num	ber:							
	Co	de: 7G634	<u>, </u>			<u> </u>			R-17	
			. I Sen	nester Su	pplement	ary Exam	ninations I	March/A	April 2023	
				'	•	eying			•	
						gineering)			
		Max. Marks: 7							Time: 3 Hours	
	/	Answer any fiv	e full q	uestions by	_	ne questio	on from ea	ch unit (5	x14 = 70 Marks)	
					******					Mark
					UN	NIT-I				
1.		Describe the c	lifferent	types of ch	ains used in	survey indi	cate the rela	ative adva	ntages of each.	141
					(OR				
2.		Define the follo	owing:							
		a) Whole circle	e bearir	ng and redu	ced bearing,	b) Fore be	earing and b	ack bearii	ng	
		c) True meridia	an and	magnetic m	eridian,	d) Magne	tic declination	on.		
		e) Dip of the m	nagnetio	c needle, an	ıd	f) Local a	ttraction.			141
					UN	IIT—II				
3.			owing: o	datum surfa	ce, line of co	llimation, re	educed leve	l, bench m	ark, change point,	
		and parallax.								141
					(OR .				
4.		The following	perpend	dicular offse	ts were taker	n from a ch	ain line to a	hedge:		
		Distance (m) -					40.00 50.		80.00	
		Offset(m) -				.90 1.80		.50 3.70	2.80	
		Calculate the	area by	: a. Trapezo	oidal rule, and	b. Simps	son's rule.			141
						IT–III				
5.		•		•			•		low along with the	
		latitudes and o	departu		1	rmine the b	1	B and leno	jth of CD.	
			Line	Length(m)	Bearing	Latitude	Departure			
			AB	725.0	0					
			BC	1060.0	N62 ⁰ 30'E	+498.45	+940.24	_		
			CD	L	N37º36'E		770.00			
			DE	945.0	S55 ⁰ 18'W	-537.99	-776.92			141
			EA	577.2	S2 ⁰ 40'W	-576.63	-26.85			141
					(OR .				
6.	a)	How is the clo	sing err	or in a trave	erse balanced	! ?				71
	b)	Describe the p	rocess	of measurir	ng the horizoi	ntal angle.				71
					UN	IT–IV				
7.		A tacheometer	r fitted v	with an anal	latic lens and	having a r	multiplying o	onstant of	100 was set up at	
				•	on a travers	se leg AB.	The following	ng reading	s were taken with	
		the staff held v							7	
		Staff	section	-	Vertical angl		·	air reading	_	
			A	40°35'	-4º24'	2.21		.99	_	
			В	22 ⁰ 35'	-5 ⁰ 12'	2.02		.90		
		Calculate the I	ength A	AB and the I			A and B.			141
						DR				
8.			-		-	neat sket	ch the proc	edure of s	solving a two-point	
		problem in pla	ne table	e surveying.						141
						IIT–V				
9.		Draw a neat sl					•			
		a) Back tange			ard tangent	•	Point of com		nt	
		d) Point of tan	•	,	t of intersection	,	ingle of defl			
		g) Angle of into		, ,	chord	i) A	pex distanc	e and		=
		j) Versed sine	of curv	е						141
			_			DR				
10.		Explain the dif	ferent n	nethods of o			es in setting	out circula	ar curves.	141
					*	**				

Hall Ticket Number :						
6 1 5 0 (01						R-17

Code: 7G631

II B.Tech. I Semester Supplementary Examinations March/April 2023

Building Materials & Construction (Civil Engineering) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)Marks UNIT-I 1. Write the properties of building stones and their structural requirements. 14M OR 2. a) Briefly describe dressing of stone and preservation of stone? 7M b) Write the standards for good quality of bricks. 7M UNIT-II 3. Describe different types of cement and their uses. Define slurry, clinker and function of gypsum in cement. 14M OR 4. a) Enumerate the properties of aluminum? 7M Explain the ingredients of Cement? 7M UNIT-III 5. a) Describe various parts of exogenous tree at any cross-section. 8M b) Explain different methods of seasoning with advantages and disadvantages? 6M OR 6. a) Explain the seasoning of timber? 7M Give the defects in timber? b) 7M **UNIT-IV** 7. Draw and explain the plan and elevation of a one and a half brick wall in English bond 14M **OR** 8. Explain different types of shallow foundations used for different structures, in various conditions, with neat diagrams. 14M UNIT-V 9. a) Explain about the king post truss with a neat sketch? 7M b) Write down the structural component of a building and explain each in brief 7M OR 10. a) State briefly the requirements of a good staircase. 7M b) Explain raft foundation with a sketch 7M

Hall Ticket Number: R-17 Code: 7GC32 II B.Tech. I Semester Supplementary Examinations March/April 2023 **Engineering Mathematics-III** (Common to All Branches) Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)Marks UNIT-I Use Milne's method to find y(0.3) from $y' = x^2 + y^2$ y(0) = 1. Find the intial values 14M y(-0.1), y(0.1), y(0.2) from the Taylors series method. Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places. 14M **UNIT-II** The following table of values of x and y is given. 6 6.9897 7.4036 7.7815 8.1291 8.4510 8.7506 9.0309 Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=6 14M OR Estimate the value of f(22) and f(42) from the following table by Newton's forward and backward interpolation formula. 14M Χ 20 25 30 35 40 45 332 260 231 354 291 204 **UNIT-III** Form a partial differential equation by eliminating the arbitrary functions f(x) and 14M g(y) from z = y f(x) + x g(y). OR Solve $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ 14M **UNIT-IV** Find the Fourier series to represent f(x) = |x| when -f < x < f and deduce that 14M $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ OR Find the half range cosine series for the function f(x) = x, when 0 < x < f hence show 14M that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$ **UNIT-V** If F(s) is the complex Fourier transform of f(x) then prove that 14M $F\left\{f\left(a\,x\right)\right\} = \frac{1}{a}F\left(\frac{s}{a}\right), a \neq 0$

OR

Find the Fourier transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{f}{2} e^{-m}, m > 0$

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

14M

Hall Ticket Number:	

Code: 7G537

II B.Tech. I Semester Supplementary Examinations March / April 2023

Electrical and Mechanical Technology

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

Use separate booklets for **Part-A & Part-B**

PART-A

	<u> </u>			
		Marks	CO	Blooms Level
	UNIT-I			
1. a)	State and explain the Ohm's Law?	7M		L1
b)	Draw a neat sketches the construction of a Dc machine? OR	7M	CO1	L1
2. a)	Explain the principle operation of DC generator?	7M		L1
b)	Mention the applications of DC motor?	7M	CO1	L1
3. a)	UNIT-II Enumerate the various losses in a transformer?	71.4		
•		7M		L3
b)	Explain the principle operation of single phase transformer? OR	7M	CO2	L3
4. a)	Define the term of Efficiency and regulation of a transformer?	7M	CO2	L3
b)	Explain the principle operation of three phase induction motor?	7M		L3
٠,	PART-B	7 1 1 1	002	LO
	UNIT-III			
5. a)	Why do we need a step Down Transformer in ARC Welding? Explain.	7M	CO3	L2
b)	Illustrate the purpose of a flux and shielding gas in welding process.	7M	CO3	L3
,	OR			
6. a)	Define welding? Classify the welding processes and also give the			
	applications of welding processes.	7M	CO3	L2
b)	Describe the process of Submerged arc welding stating its advantages and			
	limitations.	7M	CO3	L2
	UNIT-IV			
7. a)	What do you mean by single stage and multi stage compression and discuss when you suggest single stage and multi stage compression in real time applications.	7N	l co4	L2
b)	Explain working principle of Reciprocating Compressor with a neat sketch	7N	l CO4	L2
ŕ	OR			
8. a)	Differentiate between two stroke with four stroke engines	7N	l CO4	L2
b)	Interpret the provision of Clearance Volume in IC Engines and discuss about its			
	effect on cycle efficiency?	7M	l CO4	L2
0 0)	UNIT-V Contrast between air cooling and air conditioning	71/		
9. a)	· · · · · · · · · · · · · · · · · · ·	7N	CO5	L2
b)	Mechanical compression process of vapor compression cycle is replaced by a thermal compression process in vapor absorption refrigeration system. Explain.	7N	l co5	L2
	OR		. 003	LZ
10. a)	Explain any three refrigerants used in refrigeration systems with their properties.	7N	l CO5	L2
b)	Sketch the layout of an air conditioning system and explain the functions of			
	each component in it.	7N	l CO5	L3
