	Hall Ticket Number :									R-17	,	
C	:ode: 7G633 II B.Tech. I	Sema	astar	Sunn	lement	ary F	vam	inatior	ns lune ?	024	1	
		30110			gth of A	•				024		
			Ŭ	-	il Engine							
I	Max. Marks: 70			(0)	g		'		T	ime: 3 H	ours	
ŀ	Answer any five full q	uestioi	ns by	choos	-	•	on fro	om eac	h unit (5x1-	4 = 70 Mo	arks)	
					******	**				Marka	<u> </u>	
					NIT-I					Marks	CO	
	A steel rod of 30mm	n diam	eter is			conne	r tube	e of 50m	ım external			
-	diameter and 35mr											
	plates. If the temper				•	-						
	the steel and coppe											
	$ES = 2 \times 10^5 N/mr$		I EC =	= 1 x ·	10°N/ mr	n²; S	= 1.2	2 x 10⁵j	per ⁰C and		001	
	C = 1.6 x 10 ⁻⁵ per ⁰				OR					14M	CO1	
	Formulate the relati	onship	o betw	een sh		lulus. b	ulk m	nodulus	and elastic	:		
-	modulus & Also Exp	-								14M	CO1	
				U	NIT–II							
	Draw the shear for	ce & I	bendir	ng mor	nent dia	gram fo	or the	e simply	supported			
	beam carrying a cer			-		-				14M	CO2	
					OR							
•	A simply supported			•			•		•			
	distributed load of moment of 48 KN-n					-						
	shear force and k		•					•••				
	magnitude of maxim		-		-			·		14M	CO2	
				U	NIT–III							
	A beam of rectang	ular cr	oss se	ection	having w	vidth of	100	mm an	d height of	:		
	200 mm is subjecte											
	shear stress, and sk	etch th	he she	ar stre		ution al	long t	he depti	n of beam	14M	CO3	
	Define section mod	ulue V	Nhat i	e ite va	OR alue for a	a hollov	v nind	a with a	vtornal and			
•	internal diameters a			5 113 76			v pipt			14M	CO3	
				U	NIT–IV							
	Obtain an expression	on for	norma			l stress	ses o	n an inc	lined plane			
	when an element				•				•			
	expressions for resu	ultant s	tress a	and the		on				14M	CO4	
					OR							
-	Derive the expression						simp	bly suppo	orted beam	14M	CO4	
	loaded with a centra	ii point	luau t	_	1	eorem.				1410	004	
	According to the the	ory of	mavin		IT–V	es dot	ormin	o tho di	amotor of a			
•	bolt which is subject	•										
	force of 4.5 KN. Ela			-		-						
	ratio =0.3								-	14M	CO5	
	.				OR		-					
	State the significa		•	•			of	tailure.	Derive an		005	
	expression for distor	nuon er	nergy i	neory	or ranure					14M	CO5	

	Ha	I Ticket Number :					
	Cor	de: 7G634	-17				
	000	II B.Tech. I Semester Supplementary Examinations June 2024					
		Surveying					
		(Civil Engineering)					
	-	Time: wer any five full questions by choosing one question from each unit (5x14 = 70 ********	3 Hours) Marks)				
		UNIT–I	Marks				
1.	a)	Distinguish between closed and open traverse.	7M				
	b)	What is closing error' in a traverse?	7M				
		OR					
2.		A line was shown to a magnetic bearing of $38^{0}15'$ in an old map, when the declination was $15^{0}45'$ E. to what bearing should it be set now if the present magnetic declination is $6^{0}15'W$.	14M				
•							
3.		The following consecutive readings were taken with a level and 4m leveling staff on a continuously sloping ground at common intervals of 30m.					
		0.905(on A), 1.745, 2.345, 3.125, 3.725, 0.545, 1.390, 2.055, 2.955, 3.455, 0.595,					
		1.015, 1.850, 2.655, and 2.945 9(on B).					
		The RL of A was 395.500. calculate the RLs of difference points and find the					
		gradient of the line AB.	14M				
		OR					
4.		Define the following: datum surface, line of collimation, reduced level, bench mark,					
		change point, and parallax.	14M				
_			7M				
5.	a)	How can the height of a tower be determined when it is inaccessible?					
	b)	What are the methods of locating interior details in theodolite traversing? Describe the methods of checking the accuracy of close and open traverse.	7M				
		OR	7101				
6.	a)	How is the closing error in a traverse balanced?	7M				
0.	b)	Describe the process of measuring the horizontal angle.	7M				
	5)		7 101				
7.	a)	What is orientation? What are the methods of orientation? Describe the methods					
		with a sketch.	7M				
	b)	Discuss the methods of tacheometry.	7M				
		OR					
8.	a)	Explain the theory of stadia tacheometry.	7M				
	b)	Describe the procedure of setting up the plane table over a station.	7M				
0		UNIT-V	4 4 1 4				
9.		Show with neat sketches, the different types of vertical curves possible.	14M				
10		OR	714				
10.	,	Explain why super elevation is required in roads and railways.	7M 7M				
	b)	Why and where transition curves are provided?	7M				

, vq	e: 7CC32	
.0u		
	Engineering Mathematics-III	
	(Common to All Branches)	
5117		
	UNIT–I	
a)	Apply fourth order Runge-Kutta method to $\frac{dy}{dy} = 3x + \frac{1}{2}y$, $y(0) = 1$ determine $y(0.1)$	
		71
b)		71
~)		71
	OR	
	Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2 y(0) = 1$. Find the initial values	
		141
		141
a)	Evaluate $\int \frac{1}{1+x} dx$ by Simpson's 1/3 rule.	71
	0	71
0)	Using Lagrange formula find $f(4)$. Given	
	x 0 2 3 6	
		71
		141
	Form the partial differential equation by eliminating the arbitrary constants	
	$x^{2} + y^{2} + (z - c)^{2} = a^{2}$	141
	OR	
	Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and	
	g(y) from $z = y f(x) + x g(y)$.	14
	UNIT-IV	
	Find the fourier series expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce	
	that $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ -f^2$	
	1 2 5 1 5 6 12	141
c)		
		71
0)		71
	-07	
a)	Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{a}, a > 0$	71
b)		
~)		71
	Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$, hence, derive the Fourier sine	
	The are round count ansion of $f(x) = \frac{1}{x^2}$, hence, derive the round since	
	$1 + x^2$	
	<pre>\V\Clash \Ansi a) b) a) a) b)</pre>	[Common to All Branches] Max. Marks: 70 Answer any five full questions by choosing one question from each unit [5x14 = 70 Marks] UNIT-1 a) Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, $y(0)=1$ determine $y(0.1)$ correct to four decimal places. b) Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places. c) Find a real root of the equation $3x = \cos x + 1$ by Newton-Raphson's method correct to four decimal places. C) R Use Milne's method to find $y(0.3)$ from $y' = x^2 + y^2 y(0)=1$. Find the initial values y(-0.1), y(0.1), y(0.2) from the Taylors series method. UNIT-II a) Evaluate $\frac{1}{b} \frac{1}{1+x} dx$ by Simpson's 1/3 rule. b) Using Lagrange formula find $f(4)$. Given $\frac{x & 0}{2} \frac{2}{14} \frac{3}{16} \frac{6}{11}$ UNIT-III Form the partial differential equation by eliminating the arbitrary constants $x^2 + y^2 + (z-c)^2 = a^2$ OR Form a partial differential equation by eliminating the arbitrary constants $x^2 + y^2 + (z-c)^2 = a^2$ OR Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and g(y) from $z = yf(x) + xg(y)$. UNIT-IV Find the fourier series expansion of $f(x) = 2x - x^2$ in (0,3) and hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$ OR a) Find the Fourier series expansion for $f(x) = f - x$ in $0 < x < f$ b) Expand $f(x) = \cos x, 0 < x < f$ in half range sine series. UNIT-V a) Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-x}}{x}, a > 0$ b) Find the Fourier sin and cosine transform of $f(x) = 2e^{-3x} + 5e^{-2x}$ OR