Hall Ticket Number :						
	J					R-17

Code: 7G537

II B.Tech. I Semester Supplementary Examinations May/June 2022 Electrical and Mechanical Technology

(Civil Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit (5 x 14 = 70Marks) Use separate booklets for Part-A & Part-B

PART-A

UNIT-I

1. a) Explain resistance, inductance and capacitance elements in detail.

b) Two resistances of 50 and 40 respectively are connected in parallel. A third resistance of 10 is connected in series with the combination and a D.C supply of 220 V is applied to the ends of the completed circuit. Calculate the current in each resistance.

OR

- 2. a) Discuss about various types of D.C generators.
 - b) A 4-pole wave connected DC generator having 60 slots on its armature with 6 conductors per slot, run at 750 rpm and generate an open circuit voltage of 230V. Find the useful flux per pole.

UNIT-II

- 3. a) Explain the constructional details of a DC generator with a neat sketch.
 - b) Derive the expression for torque in a DC Motor? And write applications of the DC motors?

OR

- 4. a) Discuss the various losses in single phase transformer.
 - b) Describe the principle of operation of an Alternator in detail.

PART-B

UNIT–III

- 5. a) Classify various types of welding rods.
 - b) What are the essential characteristics of a flux?

OR

- 6. a) Name the tools and equipment used in electric arc welding. Describe the working principle of arc welding.
 - b) Compare A.C. and D.C. arc welding.

UNIT–IV

- 7. a) What are the merits and demerits of four stroke engines over two stroke engines?
- b) Why should I.C engines be lubricated? Explain any one type of lubrication?

OR

- 8. a) Explain in detail splash lubrication system with a block diagram?
 - b) Explain the working of a four strokes S.I Engine with the help of a neat sketch?

UNIT-V

- 9. a) Explain the working of vapour compression refrigeration system and state its advantages and disadvantages?
 - b) State the factors which affect comfort air conditioning and explain The working of comfort air conditioning system?

OR

10. Explain any three refrigerants used in refrigeration systems with their properties?

Marks

Hall Ticket Number :						
				,		R-17

Code: 7G632

II B.Tech. I Semester Supplementary Examinations May/June 2022

Fluid Mechanics

(Civil Engineering)

Max. Marks: 70 Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

1. Define total pressure and centre of pressure. Also derive the expressions for the same for an inclined immersed surface.

OR

UNIT-I

2. Find the total pressure and position of center of pressure on a triangular plate of base 2.4m and height 3.6m which is immersed in water in such a way that the plan of the plate makes an angle of 60° with the free surface of the water. The base of the plate is parallel to water surface and is at a depth of 3.0m from water surface.

UNIT-II

3. Given that $u = x^2 - y^2$ and v = -2xy, determine the stream function and potential function for the flow.

OR

4. A bend in pipe line conveying water gradually reduces from 60 cm to 30 cm diameter and deflects the flow through an angle of 60°. At the larger end the gauge pressure is 1.75Kg/cm². Determine the magnitude and direction of force exerted on the bend, a)When there is no flow, b) When the flow is 876 liters/sec.

UNIT-III

5. A horizontal pipe of diameter 40cm carrying water is suddenly reduced to a diameter of 20cm. the pressure at the larger and smaller diameter pipes are 150kN/m2 and 130kN/m2 respectively. Find the loss of head due to contraction and volume flow rate of water assume Cc=0.6.

OR

- a) Explain the terms 'Total Energy line' and 'Hydraulic gradient line'.
 - b) Distinguish between notch and weir ,orifice and mouth piece

UNIT-IV

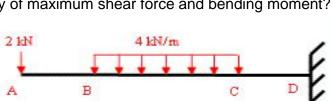
7. In a laminar flow show that the average velocity of flow in pipe is half of the maximum velocity at any section.

OR

- 8. a) Explain about Reynolds Experiment with the help of a neat sketch.
 - b) Write the characteristics of the laminar and turbulent flows.

UNIT-V

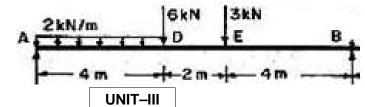
- 9. a) State Buckingham's -theorem.
 - Explain distorted and undistorted models. b)


OR

Water is flowing through a pipe of diameter 30 cm at a velocity of 4m/s. Find the velocity 10. of oil flowing in another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take 'G' of oil as 0.8.

Marks

ł	Hall Ticket Number :										
C	ode: 7G633								Į	R-17	
	II B.Tech. I Se	emester	Iqqu	emento	ary Ex	amir	natio	ons	May/.	June 2022	
			• •	ngth of					,.		
				Civil Eng							
	Max. Marks: 70		-	-						Time: 3 Hours	
	Answer any five full of	questions	by cho	osing on		stion	from	eac	:h unit	(5x14 = 70 Marks)	
				****	ጥ ጥ ጥ ጥ						Mark
			U	IIT—I							
1.	Formulate the rela	tionship b	etween	shear m	odulus	, bulk	c mod	dulus	and e	lastic modulus?	
				OR							
2.		ar 1.5m lo	ong and	-				-	-	ached to the lower e upper end of the	
	a) Maximum i			ess induc	ed in t	he ve	rtical	bar.			
	b) Maximum ii	nstantane	ous elo	ngation a	nd stra	ain er	nergy	stor	ed in th	ne vertical rod.	
	,		UN	IIT–II							
3.	Calculate the inter	sity of ma	ximum	shear for	ce and	d ben	ding	mom	nent?		
							-				
		2 kN		4 k	N/m	T	1		6		


2 m

1 m

1 m

4. Draw Shear Force Diagram and Bending Moment diagram for the beam shown below.

5. A T-section is used as a cantilever of span 1.5 m. A point load of 2.0 kN is acting at the free end of the cantilever in addition to a udl of 3 kN/m from the free end to adistance of 1.0 m. The flange is 100 x 20 mm and web is 10 x 150 mm deep. Calculate the maximum tensile and compressive stresses in the section.

OR

A simply supported beam of rectangular cross section 100mm x 200mm deep carries an 6. udl on an effective span of 4 m. If the allowable stress in bending is 10 N/ mm2 and in shear is 1 N/ mm2, what is the safe value of the udl that can be placed on the beam? Find the maximum stresses in shear and bending, if a udl of 10 kN/m is applied.

UNIT-IV

Write the moment area theorems and explain? Determine the deflection of a simply 7. supported beam subjected to concentrated load W KN at its centre?

OR

8. A beam of length 10m is simply supported at its ends and carries two point loads of 100KN and 60KN at a distance of 2m and 5m respectively from the left support. Calculate the deflections under each load. Find also the maximum deflection by double integration method. Take I=18X10 mm⁴ and E=2X105 N/mm².

UNIT-V

At a point in a strained material, direct stresses of 100 N/mm2 tension and 80 N/mm² 9. compression are applied on planes at right angles. The greater principal stress is limited to 120 N/mm2. What shearing stress may be applied to the given planes and what will be the maximum shearing stress at the point.

OR

- 10. a) Describe the construction steps of Mohr's Circle.
 - A simply supported beam of span 3 m is carrying point loads of 9 kN and 18 kN at 1 m and b) 2 m respectively from the left hand support. Determine the strain energy stored in the beam due to bending.

	Н	all Ticket Number :]			
															R-17	
	Code: 7G634													J		
	II B.Tech. I Semester Supplementary Examinations May/June 2022 Surveying															
					(-	ering)						
		lax. Marks: 70						-	-						Time: 3 Hours	
	Ar	nswer any five full qu	vestic	ons b	by ch	oosii		ne q *****	uesti	on fr	om e	each	unit (5x1	4 = 70 Marks)	
																Marks
1	2)	Explain clearly the di	fforo	nook		UN		motio		0000	and	0.011		~ ~ ~		7M
1.	a) b)	Explain clearly the di How can the accurac					-			-			-	SUC	mpass.	71VI 7M
	0)	now can the accurat	<i>5</i> y 01		Scui		R SC a					GIIC	cheu:			7 101
2.		Two stations A and	B are	e not	inter	-		e to r	ising	grou	nd b	etwee	en the	m.	Explain with a	
		neat sketch how the							-	-						
		points.														14M
•		-				UNI										
3.		The formulation widt has a traverse slope								•					•	
		apart are 1.5, 2.5 an					-			-					Sections com	14M
		.,,		-	-1	-	R									
4.		Calculate the area of	f the	corre	espon	ding	to th	e foll	owing	g data	a rec	ordeo	d by pl	ani	meter:	
		a. IR = 3.436	b. FR	R = 8.	.745	c. M	=120)cm ²	d. C	= 30	.00					
		e. The figure travers					ne an	chor	point	insid	le an	d the	zero	of tl	ne dial passed	
		the index once in the	e reve	erse	direct											14M
F		Define the following	torm			UNI	T–III									
5.		Define the following Centering, swinging			ina	face	left	fac	∵e ri	aht	teleo	scone	- inve	orto	d temporary	
		adjustment, permane	-		-					grit,	10101	Joopt	5 1170	0110	a, temperary	14M
						С	R									
6.	a)	What are the method	ds of	locat	ing ir	nterio	r det	ails ir	n theo	odolit	e trav	/ersir	ng?			
		Describe the method	ls of (chec	king t	the a	ccura	acy o	f clos	e and	d ope	en tra	verse.			7M
	b)	What are the poss	sible	sour	ces	of e	rror	while	usi	ng a	the	odolit	te? Ho	ow	can they be	
		eliminated?					F 11/									7M
7.		What is a two-point p	oroble	am?	Evola			neat	ekotr	h the	nro	تصطيبه	re of si	olvi	na a two-point	
7.		problem in plane tab			•	AILL VV	iin a	ncat	SNOL		, piot	Journ	0 0 3	0101		14M
				,	0	С	R									
8.		Derive the expression	n for	hori	zonta	l and	l vert	ical c	listan	ices i	n the	fixed	d hair	me	thod when the	
		staff is held vertically	/ and	the I	meas	ured	angl	e is t	hat o	f elev	atior).				14M
						UNI										
9.		Explain the different	meth	ods	of ov		•	the d	ifficu	lties i	n set	ting o	out cire	cula	ar curves.	14M
4.5	`		~			C	R									
10.	,	What is a vertical cu	rve?													5M
	b)	Why is it provided?	for -		atin -	+h ~ '	0 0 0 1	- 1 -	السمين	ool	10.10					5M
	c)	State an expression	TOP Ca	aicula	ating	the l	-	n of a ∗∗	verti	cal ci	urve.					4M
							ጥ									

	На	all Ticket	Number	:											
	Co	de: 7G(737											R-17	
	M	II B. ⁻ ax. Mar	[ech. S ks: 70		Eng	gine (Corr	erin nmo	g Math n to All E ng one qu	emati Branche	cs-II es)	I		Tim	2022 ne: 3 Hour = 70 Marks	
								******							Marks
							UNI	Г—I							
1.	a)	Using 7	Faylor's s	eries	meth	od, c	omp	ute the v	alue of	у	at x=	0.2 fr	rom ⁴	$\frac{ly}{lx} = x + y;$	
		y(0) = 1	l.												7M
	b)	b) Using the bisection method, find a real root of the equation $\cos x = x e^x$ correct to three decimal places.													7M
	OR														
2.	a)														7M
		correct to four decimal places.													
	b)														7M
	to four decimal places.														
3.	a)	Evoluet			imno										714
		Evaluat	$\int_{0}^{1} \frac{1}{1+x} dx$	a by S	imps	UNSI	/310	lie.							7M
	b)	Using L	agrange f	ormula	a find	f(4)	. Giv	en							
		x	0	2		3		6							7M
		У	-4	2		14		158							
4.		The foll	owing tab	le of v	عمداد	ofva	O nd v								
ч.		X			1			3	4		5	6	6		
		у	6.989	7 7.4	1036	7.78	315	8.1291	8.451	0 8	.7506	9.03	309		
		Find $\frac{dy}{dx}$	and $\frac{d^2}{dx}$	$\frac{y}{2}$ at x	=6										14M
						l	JNIT								
5.	a)	Fit a str	aight line	y = a +	b x to	the c	lata I	by the me	ethod of	least	square	es			
		X		1	3	6		8							7M
	b)	y Farres th		3	2	5		4		.	2 .	2	2 •		
	b)	⊢orm th	e partial c	litterer	ntial e	quatio	on by Of		ing a, b i	rom	ax^2+b	y y - + y	$z^{-} = 1$	L	7M
														_	

7M

7M

7M

6. a) Form a partial differential equation by eliminating the arbitrary functions from z = f(x+at) + g(x-at).

b) Form a partial differential equation by eliminating the arbitrary functions f(x) and g(y) from z = y f(x) + x g(y).

UNIT–IV

- 7. a) Express f(x) = x as half range sine in 0 < x < 2
 - b) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$

OR

8. a) Find the half range cosine series for f(x) = x(2-x) in $0 \le x \le 2$ and hence find prove

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
 7M

b) Find the Fourier series to represent f(x) = |x| when -f < x < f and deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{f^2}{8}$$
7M

UNIT-V

- 9. a) Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$ 7M
 - b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 x, 1 < x < 2 \\ 0, x > 2 \end{cases}$ 7M

OR

10. Find the Fourier transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^{2}} dx = \frac{f}{2}e^{-m}, m > 0$ 14M