
.	R-1	7
Code: 7		
11 [3.Tech. I Semester Supplementary Examinations November 2023 Fluid Mechanics	
	(Civil Engineering)	
Max. M		Hours
Answer	any five full questions by choosing one question from each unit (5x14 = 70 N ********	1arks)
		Marks
	UNIT–I	vianto
1.	State Pascal's law. Derive the equation for the same.	14M
	OR	
2.	Define total pressure and centre of pressure. Also derive the expressions	
	for the same for an inclined immersed surface.	14M
	UNIT–II	
3.	Classify the types of flows.	14M
4	OR Civen that $y = y^2 y^2$ and $y = 2yy$ determine the stream function and notantial	
4.	Given that $u = x^2 - y^2$ and $v = -2xy$, determine the stream function and potential function for the flow.	14M
	UNIT–III	
5. a)	Explain the terms 'Total Energy line' and 'Hydraulic gradient line'.	7M
b)	Distinguish between notch and weir ,orifice and mouth piece	7M
	OR	
6. a)	During an experiment 95litres of water is flowing over a right angled notch	
	was collected in two minutes. If the head of the still is 4cm, determine the coefficient of discharge of the notch.	8M
b)	Classify the various types of orifice?	6M
	UNIT-IV	
7.	Derive the Hagen poiseuille equation for the loss of head in pipes.	14M
	OR	
8.	The two reservoirs with surface level difference of 20m are to be	
	connected by 1m dia pipe 6km long. Calculate the discharge when a cast iron pipe of roughness k=0.3mm is used. What will be the percentage	
	increase in discharge if cast iron pipe were to be replaced by steel pipe of	
	roughness k=0.1mm. neglect local losses	14M
	UNIT-V	
9.	Explain different model laws.	14M
10 0)	OR Explain distorted and undistorted models	6M
10. a) b)	Explain distorted and undistorted models. Water is flowing through a pipe of diameter 30 cm at a velocity of 4m/s.	6M
6)	Find the velocity of oil flowing in another pipe of diameter 10 cm if the	
	condition of dynamic similarity is satisfied between the two pipes. The	
	viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take 'G'	
	of oil as 0.8.	8M

14M CO3 B4

50 mm

Page 1 of 2

Code: 7G633

6.	Sketch the shear stress distribution across the circular section of dimension 100mm	14M	CO3	B4
	UNIT-IV			
7.	State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure	14M	CO4	B4
	OR			
8.	A cantilever of length 3 m carries a uniformly distributed load of end 2.5KN/m run for a length of 1.25 m from the fixed end & a point load of 1KN at the free end. Find the deflection at the free end if the section is			
	rectangular 12 cm wide & 24 cm deep & E =1 x 10^4 N/mm ²	14M	CO4	B4
	UNIT–V			
9.	Derive the expression for maximum shear strain Energy theory.	14M	CO5	B1
	OR			
10.	State and explain any three theories of elastic failure with neat sketch.	14M	CO5	B3

	на	II TICKET INUR	nber :							N 4 -	٦
C	Coc	de: 7GC32								R-17	
		ll B.Tech	n. I Sem						oveml	oer 2023	
				-		g Math					
	Mc	ax. Marks: 7	0	(Commo	n to All E	sranches	5)		Time: 3 Hours	5
				estions b	y choosir	U 1	Jestion fr	om each	n unit (5	x14 = 70 Marks	
						*****					Marks
					L	INIT–I					Maria
1. a	a)	Find the rea	al root of	equation			section n	nethod.			7N
t	c)					-			_0.2 fra	dy = x + y	
			015 5011	es meu		pute the	value ui	y at x=	=0.2 IIC	$\int m \frac{dy}{dx} = x + y;$	
		y(0)=1.									7N
						OR					
2.		Using R-K r	nethod o	of 4 th orde	er, solve -	$\frac{dy}{dt} = \frac{y^2 - z}{z}$	$\frac{x^2}{2}$, y(0)	=1. Find	v(0.2),	y(0.4).	
		U					r^2				14N
-						NIT-II					
3. a	a)	Find the first)		1		-	pint $x = 1.5$	
			x y	1.5 3.375	2.0 7.0	2.5 13.625	3.0 24.0	3.5 38.875	4.0 59.0		7N
k	c)	Evaluate f(2								Jse Lagrange	710
	,	interpolation		()						0 0	7N
						OR					
4.			lines x=		-	-				between the the following	
			X	0.0	0.00	25 0).5 ().75	1.00		
			у	1.00	0.9 0.9	896 0.9	9589 0.	9089 0	.8415		
		Estimate the	e volume	e of the s	oli formed	d using Si	mpsons r	ule.			7N
						NIT–III					
5. a	a)	Form the pa			quation b	by eliminat	ting the a	rbitrary co	onstants	6	
		$x^2 + y^2 + (z + z)$,								7N
t	c)	Fit a second	d degree	· _					of least	squares	
				-	x 10	12 15	23 20				71
					y 14	17 23 OR	25 2 ⁻	1			7N
6. a	a)	Fit a straigh	t line v =	$a+b x t \Omega$	the data		ethod of I	east soua	ares		
	.,		. ,		x 0	1 3	6 8				
					y 1	3 2	5 4				7M
ŀ)		which diff.	wootial -					1	$-r^2 + L^2$	

b) Form the partial differential equation by eliminating a, b from $z = a x + b y + a^2 + b^2$

Hall Ticket Number :

(0	1	3	6	8		
/	1	3	2	5	4		7M
ation by eliminating a, b from $z = a x + b y + a^2 + b^2$							

14M

UNIT-IV 7. a) Find the Fourier series expansion for f(x) = f - x in 0 < x < 2f7M 7M

b) Expand $f(x) = \cos x, 0 < x < f$ in half range sine series.

OR

8. Express
$$f(x) = x$$
 as half range sine and cosine in $0 < x < 2$

UNIT-V

9. a) Find the Fourier sin and cosine transform of
$$f(x) = \frac{e^{-ax}}{x}, a > 0$$
 7M

b) Find the Fourier cosine transform of
$$f(x) = e^{-ax} (x > 0, a > 0)$$
. 7M

OR

Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, |x| \le 1 \\ 0, |x| \ge 1 \end{cases}$. 10.

Hence evaluate
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \frac{x}{2} dx$$
