Hall Ticket Number :

Code: 7G632

II B.Tech. I Semester Supplementary Examinations November 2023

Fluid Mechanics

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. State Pascal's law. Derive the equation for the same.

OR

2. Define total pressure and centre of pressure. Also derive the expressions for the same for an inclined immersed surface.

UNIT-II

3. Classify the types of flows.

OR
4. Given that $u=x^{2}-y^{2}$ and $v=-2 x y$, determine the stream function and potential function for the flow.

UNIT-III

5. a) Explain the terms 'Total Energy line' and 'Hydraulic gradient line'.
b) Distinguish between notch and weir ,orifice and mouth piece 7M

OR
6. a) During an experiment 95 litres of water is flowing over a right angled notch was collected in two minutes. If the head of the still is 4 cm , determine the coeffient of discharge of the notch.
b) Classify the various types of orifice? 6M
UNIT-IV
7. Derive the Hagen poiseuille equation for the loss of head in pipes.

OR

8. The two reservoirs with surface level difference of 20 m are to be connected by 1 m dia pipe 6 km long. Calculate the discharge when a cast iron pipe of roughness $\mathrm{k}=0.3 \mathrm{~mm}$ is used. What will be the percentage increase in discharge if cast iron pipe were to be replaced by steel pipe of roughness $\mathrm{k}=0.1 \mathrm{~mm}$. neglect local losses

UNIT-V

9. Explain different model laws.

OR
10. a) Explain distorted and undistorted models.
b) Water is flowing through a pipe of diameter 30 cm at a velocity of $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of oil flowing in another pipe of diameter 10 cm if the condition of dynamic similarity is satisfied between the two pipes. The viscosity of water and oil is given as 0.01 poise and 0.025 poise. Take ' G ' of oil as 0.8.

Code: 7G633

II B.Tech. I Semester Supplementary Examinations November 2023

Strength of Materials

(Civil Engineering)

Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. Mild steel rod of 25 mm diameter and 300 mm long is enclosed centrally inside a hollow copper tube of external diameter 30 mm and internal diameter 25 mm . The composite bar is subjected to an axial pull of 50 kN . If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses developed in the rod and the tube. Also find the extension of the rod.

OR

2. A bar is subjected to tensile test with a diameter of 30 mm , tensile load is 54 KN , gauge length 300 mm and extension of the bar is 0.112 mm and change in diameter 0.00366 . Determine poisons ratio and three elastic constants.

UNIT-II

3. A simply supported beam of length 10 carries the uniformly distributed load and two point loads as shown in Fig. Draw the S.F. and B.M. diagram for the beam. Also calculate the maximum bending moment.

OR

4. A Simply supported beam 6 meter span carries UDL of $10 \mathrm{KN} / \mathrm{m}$ for left half of span and two point loads of 25 kN end 50 kN at 4 m and 5 m from left support. Find maximum SF and BM and their location drawing SF and BM diagrams.

UNIT-III

5. A beam is simply supported at its ends and having cross-section as shown in figure is loaded with a U.D.L., over whole of its span. If the beam is 8 m long, find the U.D,L, if maximum permissible bending stress in tension is limited to $30 \mathrm{MN} / \mathrm{m}^{2}$ and in compression to $45 \mathrm{MN} / \mathrm{m}^{2}$. What are the actual maximum bending stresses set up in the section.

6. Sketch the shear stress distribution across the circular section of dimension 100 mm

14M CO3 B4
UNIT-IV
7. State the significance and application of theories of failure. Derive an expression for distortion energy theory of failure

14M CO4
B4

OR

8. A cantilever of length 3 m carries a uniformly distributed load of end $2.5 \mathrm{KN} / \mathrm{m}$ run for a length of 1.25 m from the fixed end \& a point load of 1 KN at the free end. Find the deflection at the free end if the section is rectangular 12 cm wide \& 24 cm deep \& $\mathrm{E}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$

14M CO4 B4

UNIT-V

9. Derive the expression for maximum shear strain Energy theory.

14M CO5 B1

OR

10. State and explain any three theories of elastic failure with neat sketch. $\quad 14 \mathrm{M} \quad \mathrm{CO} 5 \quad \mathrm{~B} 3$

Code: 7GC32

R-17
II B.Tech. I Semester Supplementary Examinations November 2023

Engineering Mathematics-III

(Common to All Branches)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
Marks

UNIT-I

1. a) Find the real root of equation $x^{3}-x-11=0$ by bisection method.
b) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y$; $y(0)=1$.

OR

2. Using R-K method of $4^{\text {th }}$ order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$. Find $y(0.2), y(0.4)$.

UNIT-II

3. a) Find the first and second derivatives of the function tabulated below at the point $x=1.5$

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

b) Evaluate $f(10)$ given $f(x)=168,192,336$ at $x=1,7,15$ respectively. Use Lagrange interpolation.
4. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines $x=0$ and $x=1$ and a curve through the points with the following co-ordinates:

x	0.00	0.25	0.5	0.75	1.00
y	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the soli formed using Simpsons rule.

UNIT-III

5. a) Form the partial differential equation by eliminating the arbitrary constants

$$
x^{2}+y^{2}+(z-c)^{2}=a^{2}
$$

b) Fit a second degree parabola to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21

OR
6. a) Fit a straight line $y=a+b x$ to the data by the method of least squares

x	0	1	3	6	8
y	1	3	2	5	4

b) Form the partial differential equation by eliminating a, b from $z=a x+b y+a^{2}+b^{2}$

UNIT-IV

7. a) Find the Fourier series expansion for $f(x)=\pi-x$ in $0<x<2 \pi \quad 7 \mathrm{M}$
b) Expand $f(x)=\cos x, 0<x<\pi$ in half range sine series. 7M

OR

8. Express $f(x)=x$ as half range sine and cosine in $0<x<2$

UNIT-V

9. a) Find the Fourier sin and cosine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$
b) Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.

OR

10. Find the Fourier transform of $f(x)=\left\{\begin{array}{c}1-x^{2},|x| \leq 1 \\ 0,|x| \geq 1\end{array}\right.$.

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$

