	ŀ	Hall Ticket Number :	1
	С	R-17	
		II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
		Fluid Mechanics	
		(Civil Engineering)	
		Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	

		UNIT-I	Marks
1.	a)	Define vapour pressure, capillarity, surface tension and compressibility.	10M
	b)	If the specific gravity of a liquid is 0.9, determine its mass density and specific weight.	4M
		OR	
2.		Define total pressure and centre of pressure. Also derive the expressions for the same for an inclined immersed surface.	14M
		UNIT-II	
3.	a)	State and prove the Bernoulli's Equation.	7M
	b)	A 300 mm diameter pipe carries water under a head of 20 m with a velocity of 3.5 m/s. If the	
		axis of the pipe turns through 450 find the magnitude and direction of the resultant force at the	714
		bend. OR	7M
4.		Given that $u = x^2 - y^2$ and $v = -2xy$, determine the stream function and potential function for the	
		flow.	14M
		UNIT–III	
5.	a)	Explain the laws of fluid friction.	7M
	b)	A pipe 50 mm diameter is 6 m long and the velocity of flow of water in the pipe is 2.4 m/s. What loss of head and the corresponding power would be saved if the central 2m length of pipe was replaced by 72 mm diameter pipe the change of section being sudden? Take f=0.04 for the pipes of both diameters.	7M
		OR	
6.		The inlet and throat diameter of a Venturimeter are 0.3 m and 0.15 m, respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is 137.34 kN/m ² , while the vacuum pressure head at the throat is 0.37 m of mercury. Find the rate of flow. Assume that 4% of the differential head is lost between the inlet and the throat. Find also the value of C_d for	
		the Venturimeter.	14M
7.	a)	Derive an expression for coefficient of discharge by using venturi meter.	6M
	b)	A rectangular notch of crest width 0.5 m is used to measure the flow of water in a rectangular channel 0.6m wide and 0.45m deep. If the water level in the channel is 0.225m above the weir crest, find the discharge in the channel. For the notch assume cd=0.63and take velocity of	0
		approach into account	8M
		OR	
8.		Derive Hagen-Poiseullie equation from basics.	14M
9.		UNIT-V Explain the geometric, kinematic and dynamic similarities.	1414
5.		OR	14M
10.	a)	What is dimensional analysis? Explain Buckingham's pi theorem.	7M
	b)	Explain Dimensionless numbers.	7M

Hall ⁻	Ticke	et Number :	
Code	: 7G	633	R-15
	II B	3.Tech. I Semester Supplementary Examinations No	v/Dec 2022
		Strength of Materials	
		(Civil Engineering)	T ' 0.11
		rks: 70 ny five full questions by choosing one question from each u	Time: 3 Hours
			1111 (JX14 - 70 Marks)
		UNIT–I	
1.		Derive the expression for volumetric strain of a rectangular	-
		three forces in mutually perpendicular directions?	14M
0		OR	ation is acted up
2.		A cast Iron flat, 300mm long and of 30mmx50mm uniform se on by the following forces uniformly distributed over the resp	•
		in the direction of length, 350KN in the direction of width(
		200KN in the direction of thickness(tensile). Determine th	ne change in the
		volume of the flat.	14M
3.	a)	Explain different types of beams, loads and supports?	8M
	b)	Define shear force and Bending moment?	6M
4.		OR Draw Shear Force Diagram and Bending Moment diagram	m and locate the
4.		point of contra flexure for the beam shown below.	
		2kN/m 4kN 8kN	
		A B	
		2m ClmD 4m E 2m F	
		[5] 이상 이상 <u></u>	14M
_			,
5.		A rectangular beam 300mm deep is simply supported 4m.What UDL per meter, the beam may carry if the bendin	
		exceed 120? Take I=8X10 ⁶ mm ⁴ .	14M

OR

6. The cross section of a cast iron machine element used as a beam is shown in the figure. The beam resists bending moment about the horizontal neutral axis. The permissible stresses in tension and compression are 50N/mm² and 60N/ mm². Determine the moment of resistance of the section about the horizontal N A for both positive and negative bending moments.

14M

14M

14M

14M

UNIT–IV

- 7. The flexural rigidity of a cantilever of span 4 m is 2 x 107 kN-m from the fixed end to a distance of 2.5 m and is 1 x 107 kN-m for the remaining part. Calculate the maximum deflection in the beam if it carries a udl of 4 kN/m over the entire span in addition to a concentrated load of 5 kN at 2.5 m from the fixed end. Use Mohr's theorems.
 OR
- 8. Write the moment area theorems and explain? Determine the deflection of a simply supported beam subjected to concentrated load W KN at its centre?

UNIT-V

9. Derive the expression for maximum shear strain theory and maximum shear stress theory of failure.

OR

 A rectangular block of material subjected to a tensile stress of 110 N/mm² on one plane and a tensile stress of 47 N/mm², Shear stress of 63 N/mm². Determine the magnitude of major and minor principal stress, maximum shear stress?

~	ode: 7G634	
C	II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022	
	Surveying	
	(Civil Engineering)	
	Max. Marks: 70 Time: 3 Hours	
1	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)	
	*****	Mar
	UNIT-I	
. a)	What does traverse surveying mean?	7
b)	Distinguish between closed and open traverse.	7
	OR	
	A steel tape 20m long, standardized at 15°C with a pull of 12kg, was used to measure distance	
	along a slope of 5°25'. If the mean temperature during measurement was 12°C, and the pull	
	applied 18kg, determine the correction required per tape length. Assume coefficient of	
	expansion as $114x \ 10^{-7}$ per ⁰ C, cross-sectional area of tape = 0.08 cm ² , E = $2.1 \ x \ 10^{6} \ \text{kg/cm^{2}}$.	14
	UNIT-II The formulation width of a read is 10m and the side alongs is 2:1. The surface of the ground	
	The formulation width of a road is 10m and the side slopes is 2:1. The surface of the ground has a traverse slope of 1 in 10. If the depths of cutting at the centres of three sections 60m	
	apart are 1.5, 2.5 and 2.0m respectively, determine the volume of earth work.	14
	OR	
	An excavation is to be made for a reservoir 26m long and 15m wide at the bottom, of side slope	
	2:1. Calculate the volume of excavation if the depth is 4m. Assume that the ground surface is	
	level before excavation.	14
	UNIT–III	
. a)	Describe the process of measuring the horizontal angle.	7
b)	Describe how you would measure vertical angles.	7
	OR	
•	What is temporary adjustment of a theodolite? Describe the process of such adjustment.	14
	UNIT-IV	
. a)	Discuss the methods of tacheometry.	7
b)	Explain the theory of stadia tacheometry.	7
,	OR	_
. a)	What are the errors that may occur in plane tabling?	7
b)	What are the precautions to be taken in plane table surveying?	7
•	What are the different types of curves? Draw neat sketches of each.	14
	OR	
•	A road bend which deflects by 90° is to be designed for a maximum speed of 130km/hr, a maximum centrifugal ratio of ¼, and a maximum rate of change of radial acceleration of	
	35cm/s ³ . The curve should consist of a circular arc combined with two cubic spirals. Calculate :	
	a. The radius of circular arc,	

c. The total length of the composite curve.

14M

Hall Ticket Number :			
Code: 7GC32		R-17	
	ester Supplementary Exa	minations Nov/Dec 2022	
	Engineering Mathem	atics-III	
	(Common to All Brand	ches)	
Max. Marks: 70		Time: 3 Hou	rs
Answer any five full ques	tions by choosing one questions	on from each unit (5x14 = 70 Marks	5)
			Marks
	UNIT–I		
`		dy	

- 1. a) Using Taylor's series method, compute the value of y at x=0.2 from $\frac{dy}{dx} = x + y$; y(0) = 1. 7M
 - b) Using the bisection method, find a real root of the equation $\cos x = x e^x$ correct to three 7M decimal places.
- Solve $y' = y^2 + x$, y(0) = 1. Using Taylor's series Method, Compute y(0.1), y(0.2)2. 14M and y(0.3).
- 3. a) The following table of values of x and y is given.

x	0	1	2	3	4	5	6
У	6.9897	7.4036	7.7815	8.1291	8.4510	8.7506	9.0309

UNIT-II

OR

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x=6

b) Using Lagrange is interpolation formula find the value of f(10) from the following table

x	5	6	9	11
у	12	13	14	16
		•		

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1 from the following table. 4.

Х	1.0	1.1	1.2	1.3	1.4	1.5	1.6	
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031	14N
			UN	IIT–III				

5. a) Fit a straight line y = a + b x to the data by the method of least squares

х	0	1	3	6	8
у	1	3	2	5	4

b) Form the partial differential equation by eliminating a, b from $a x^2 + b y^2 + z^2 = 1$ 7M

OR

6. a) Fit a curve $y = a e^{b x}$ to the following data by the method of least squares

х	0	1	2	3
у	1.05	2.10	3.85	8.30

b) Form a partial differential equation by eliminating arbitrary functions the from z = f(x+at) + g(x-at). 7M

7M

7M

OR

7M

7M

7M

UNIT–IV

- 7. a) Express f(x) = x as half range sine in 0 < x < 2
 - b) Find the Fourier series to represent f(x) = f x in $0 \le x \le 2$ 7M

OR

8. a) Obtain the Fourier series for
$$f(x) = \left(\frac{f-x}{2}\right)^2$$
 in $0 < x < 2f$ 7M

b) Find the half range cosine series for f(x) = x(2-x) in $0 \le x \le 2$ and hence find prove

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
 7M

9. a) Find the Fourier cosine transform of $f(x) = \begin{cases} x, 0 < x < 1 \\ 2 - x, 1 < x < 2 \\ 0, x > 2 \end{cases}$

b) Find the finite Fourier sine and cosine transforms of f(x) defined by

$$f(x) = \begin{cases} 1, 0 < x < \frac{f}{2} \\ -1, \frac{f}{2} < x < f \end{cases}$$
 7M

OR

- 10. a) Find the Fourier sin and cosine transform of $f(x) = 2e^{-5x} + 5e^{-2x}$
 - b) Find the Fourier Transform of $f(x) = \begin{cases} a^2 x^2, & \text{if } |x| < a \\ 0 & \text{if } |x| > a > 0 \end{cases}$, and hence show that

 $\int_{a}^{a} \frac{\sin x - \cos x}{x^3} dx = \frac{f}{4}.$ 7M ***