## Code: 7G632

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

## Fluid Mechanics

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## Marks

UNIT-I1. a) Define vapour pressure, capillarity, surface tension and compressibility.10M
b) If the specific gravity of a liquid is 0.9 , determine its mass density and specific weight. ..... 4M
OR
2. Define total pressure and centre of pressure. Also derive the expressions for the same for aninclined immersed surface.14M
UNIT-II3. a) State and prove the Bernoulli's Equation.7Mb) A 300 mm diameter pipe carries water under a head of 20 m with a velocity of $3.5 \mathrm{~m} / \mathrm{s}$. If theaxis of the pipe turns through 450 find the magnitude and direction of the resultant force at thebend.7M
OR
4. Given that $u=x^{2}-y^{2}$ and $v=-2 x y$, determine the stream function and potential function for the flow.
UNIT-III
5. a) Explain the laws of fluid friction.b) A pipe 50 mm diameter is 6 m long and the velocity of flow of water in the pipe is $2.4 \mathrm{~m} / \mathrm{s}$.
What loss of head and the corresponding power would be saved if the central 2 m length of pipe was replaced by 72 mm diameter pipe the change of section being sudden? Take $\mathrm{f}=0.04$ for the pipes of both diameters.7M

## OR

6. The inlet and throat diameter of a Venturimeter are 0.3 m and 0.15 m , respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is $137.34 \mathrm{kN} / \mathrm{m}^{2}$, while the vacuum pressure head at the throat is 0.37 m of mercury. Find the rate of flow. Assume that $4 \%$ of the differential head is lost between the inlet and the throat. Find also the value of $\mathrm{C}_{\mathrm{d}}$ for the Venturimeter.

## UNIT-IV

7. a) Derive an expression for coefficient of discharge by using venturi meter.
b) A rectangular notch of crest width 0.5 m is used to measure the flow of water in a rectangular channel 0.6 m wide and 0.45 m deep. If the water level in the channel is 0.225 m above the weir crest, find the discharge in the channel. For the notch assume $\mathrm{cd}=0.63$ and take velocity of approach into account
OR
8. Derive Hagen-Poiseullie equation from basics. ..... 14M
UNIT-V
9. Explain the geometric, kinematic and dynamic similarities. ..... 14M
OR
10. a) What is dimensional analysis? Explain Buckingham's pi theorem. ..... 7M
b) Explain Dimensionless numbers. ..... 7M

## Code: 7G633

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

## Strength of Materials

( Civil Engineering )
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. Derive the expression for volumetric strain of a rectangular bar subjected to three forces in mutually perpendicular directions?

OR
2. A cast Iron flat, 300 mm long and of $30 \mathrm{~mm} \times 50 \mathrm{~mm}$ uniform section, is acted up on by the following forces uniformly distributed over the respective C/S 25KN in the direction of length, 350 KN in the direction of width(compressive) and 200 KN in the direction of thickness(tensile). Determine the change in the volume of the flat.

## UNIT-II

3. a) Explain different types of beams, loads and supports?
b) Define shear force and Bending moment?

OR
4. Draw Shear Force Diagram and Bending Moment diagram and locate the point of contra flexure for the beam shown below.


UNIT-III
5. A rectangular beam 300 mm deep is simply supported over a span of 4 m . What UDL per meter, the beam may carry if the bending stress is not to exceed 120 ? Take $\mathrm{I}=8 \mathrm{X} 10^{6} \mathrm{~mm}^{4}$.

## OR

6. The cross section of a cast iron machine element used as a beam is shown in the figure. The beam resists bending moment about the horizontal neutral axis. The permissible stresses in tension and compression are $50 \mathrm{~N} / \mathrm{mm}^{2}$ and $60 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the moment of resistance of the section about the horizontal N A for both positive and negative bending moments.


## UNIT-IV

7. The flexural rigidity of a cantilever of span 4 m is $2 \times 107 \mathrm{kN}-\mathrm{m}$ from the fixed end to a distance of 2.5 m and is $1 \times 107 \mathrm{kN}-\mathrm{m}$ for the remaining part. Calculate the maximum deflection in the beam if it carries a udl of $4 \mathrm{kN} / \mathrm{m}$ over the entire span in addition to a concentrated load of 5 kN at 2.5 m from the fixed end. Use Mohr's theorems.

## OR

8. Write the moment area theorems and explain? Determine the deflection of a simply supported beam subjected to concentrated load W KN at its centre?

## UNIT-V

9. Derive the expression for maximum shear strain theory and maximum shear stress theory of failure.

## OR

10. A rectangular block of material subjected to a tensile stress of $110 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile stress of $47 \mathrm{~N} / \mathrm{mm}^{2}$, Shear stress of $63 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the magnitude of major and minor principal stress, maximum shear stress?

## Code: 7G634

|| B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

## Surveying

(Civil Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )
$* * * * * * * * *$

## UNIT-I

1. a) What does traverse surveying mean?
b) Distinguish between closed and open traverse.

## OR

2. A steel tape 20 m long, standardized at $15^{\circ} \mathrm{C}$ with a pull of 12 kg , was used to measure distance along a slope of $5^{\circ} 25^{\prime}$. If the mean temperature during measurement was $12^{\circ} \mathrm{C}$, and the pull applied 18 kg , determine the correction required per tape length. Assume coefficient of expansion as $114 \times 10^{-7}$ per $^{0} \mathrm{C}$, cross-sectional area of tape $=0.08 \mathrm{~cm}^{2}, \mathrm{E}=2.1 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$.

## UNIT-II

3. The formulation width of a road is 10 m and the side slopes is $2: 1$. The surface of the ground has a traverse slope of 1 in 10 . If the depths of cutting at the centres of three sections 60 m apart are 1.5, 2.5 and 2.0 m respectively, determine the volume of earth work.

## OR

4. An excavation is to be made for a reservoir 26 m long and 15 m wide at the bottom, of side slope 2:1. Calculate the volume of excavation if the depth is 4 m . Assume that the ground surface is level before excavation.

## UNIT-III

5. a) Describe the process of measuring the horizontal angle.
b) Describe how you would measure vertical angles.

## OR

6. What is temporary adjustment of a theodolite? Describe the process of such adjustment.

## UNIT-IV

7. a) Discuss the methods of tacheometry.
b) Explain the theory of stadia tacheometry.

OR
8. a) What are the errors that may occur in plane tabling?
b) What are the precautions to be taken in plane table surveying?

## UNIT-V

9. What are the different types of curves? Draw neat sketches of each.

## OR

10. A road bend which deflects by $90^{\circ}$ is to be designed for a maximum speed of $130 \mathrm{~km} / \mathrm{hr}$, a maximum centrifugal ratio of $1 / 4$, and a maximum rate of change of radial acceleration of $35 \mathrm{~cm} / \mathrm{s}^{3}$. The curve should consist of a circular arc combined with two cubic spirals. Calculate :
a. The radius of circular arc,
b. The requisite length of the transition curve, and
c. The total length of the composite curve.

## Code: 7GC32

II B.Tech. I Semester Supplementary Examinations Nov/Dec 2022

## Engineering Mathematics-III

(Common to All Branches)
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ( $5 \times 14=70$ Marks )

## UNIT-I

1. a) Using Taylor's series method, compute the value of y at $\mathrm{x}=0.2$ from $\frac{d y}{d x}=x+y ; y(0)=1$.
b) Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.

## OR

2. Solve $y^{\prime}=y^{2}+x, y(0)=1$. Using Taylor's series Method, Compute $y(0.1), y(0.2)$ and $y(0.3)$.

## UNIT-II

3. a) The following table of values of $x$ and $y$ is given.

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 6.9897 | 7.4036 | 7.7815 | 8.1291 | 8.4510 | 8.7506 | 9.0309 |

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=6$
b) Using Lagrange is interpolation formula find the value of $f(10)$ from the following table

| $x$ | 5 | 6 | 9 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 12 | 13 | 14 | 16 |

## OR

4. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$ from the following table.

| X | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 7.989 | 8.403 | 8.781 | 9.129 | 9.451 | 9.750 | 10.031 |

UNIT-III
5. a) Fit a straight line $y=a+b x$ to the data by the method of least squares

| $x$ | 0 | 1 | 3 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 3 | 2 | 5 | 4 |

b) Form the partial differential equation by eliminating $\mathrm{a}, \mathrm{b}$ from $a x^{2}+b y^{2}+z^{2}=1$

## OR

6. a) Fit a curve $y=a e^{b x}$ to the following data by the method of least squares

| x | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| y | 1.05 | 2.10 | 3.85 | 8.30 |

b) Form a partial differential equation by eliminating the arbitrary functions from $z=f(x+a t)+g(x-a t)$.

## UNIT-IV

7. a) Express $f(x)=x$ as half range sine in $0<x<2$
b) Find the Fourier series to represent $f(x)=\pi x$ in $0 \leq x \leq 2$

## OR

8. a) Obtain the Fourier series for $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in $0<x<2 \pi$
b) Find the half range cosine series for $f(x)=x(2-x)$ in $0 \leq x \leq 2$ and hence find prove that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\ldots=\frac{\pi^{2}}{12}$

## UNIT-V

9. a) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{c}x, 0<x<1 \\ 2-x, 1<x<2 \\ 0, x>2\end{array}\right.$
b) Find the finite Fourier sine and cosine transforms of $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{l}
1,0<x<\frac{\pi}{2} \\
-1, \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

## OR

10. a) Find the Fourier sin and cosine transform of $f(x)=2 e^{-5 x}+5 e^{-2 x}$
b) Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}a^{2}-x^{2}, \text { if }|x|<a \\ 0 \\ \text { if }|x|>a>0\end{array}\right.$, and hence show that

$$
\int_{0}^{a} \frac{\sin x-\cos x}{x^{3}} d x=\frac{\pi}{4}
$$

