Hall Ticket Number :							
	J					1	R-17

Code: 7G334

II B.Tech. I Semester Supplementary Examinations March 2021

Analog Electronics-I

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

Answer all five units by choosing one question from each unit ($5 \times 14 = 70$ Marks)

- 1. a) State and prove millers theorem. Explain its significance in transistor circuit analysis.
 - b) Briefly explain how transistor acts as an amplifier, and draw h-parameter model of transistor.

OR

 A CE amplifier has the h-parameters given as hie=1000 hre=2x10⁻⁴ and hoe=25µmho and hfe=50. Where both load and source resistances are 1k . Then determine current gain, voltage gain, input and output resistances, overall input and output resistances.

UNIT–II

- 3. a) Explain the concept of feedback with block diagram.
 - b) Briefly discuss about the effect of feedback on amplifier bandwidth

OR

- 4. a) Prove that negative feedback increases the bandwidth and decreases distortion.
 - b) An amplifier has an open loop gain 1000 and a feedback ratio of 0.04. if the open loop gain changed by 10% due to temperature, then find the percentage change in gain of the amplifier with feedback.

UNIT-III

- 5. a) What is the condition for oscillations?
 - b) In a transistorized Hartley oscillator, the two inductances are2mHand 20mHwhile the frequency is to be changed from950 KHz to 2050 KHz. Calculate the range over which the capacitor is to be varied.

OR

6. Sketch the topology of a generalized resonant circuit of LC oscillator using the impedances Z1, Z2, Z3. At what frequency will this circuit oscillate?

UNIT–IV

- 7. a) Note the advantages of Large signal amplifiers.
 - b) Derive the expression for efficiency in class B amplifier

OR

- 8. a) A Class B Push-Pull amplifier supplies power to a loud speaker of 10 .The transformer has a turns ratio of N1:N2 of 4:1 and efficiency is 95%.calculatethe following.(i)Max power output(ii)Max power dissipation in each transistor
 - b) Write short notes on Class-A direct coupled Class-A power amplifier.

UNIT–V

- 9. a) State and prove clamping circuit theorem.
 - b) List out the classification of clippers and clampers.

OR

- 10. a) Explain the RC Integrator with Exponential input.
 - b) Discuss about Positive peak clampers.

Hall Ticket Number :						
• • • •				J		R-17

Code: 7G233

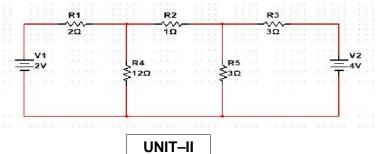
II B.Tech. I Semester Supplementary Examinations March 2021

Electrical Circuits-I

(Electrical and Electronics Engineering)

Max. Marks: 70

Time: 3 Hours

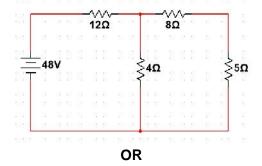

Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)

UNIT–I

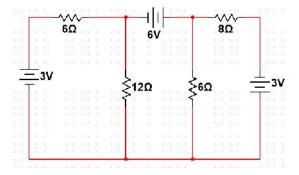
- 1. a) Explain in detail the V-I relationship for R, L and C with neat diagrams.
 - b) What is current and voltage division rule?

OR

2. Find the current through R₄=12 ohms resistance for the circuit shown below using nodal analysis.

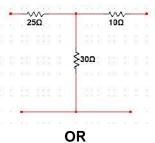

- 3. a) Define Time period and form factor.
 - b) Discuss about power triangle and power factor in ac circuits.

OR

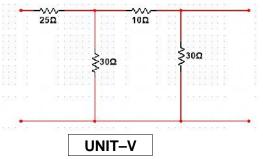

- 4. a) Define the terms (i) Resonant Frequency(ii) Band width(iii)Resonance(iv) Q-factor
 - b) Derive the expression for resonant frequency bandwidth for a parallel RLC circuit.

UNIT-III

- 5. a) State and explain super position theorem for DC circuits with an example.
 - b) Find the current through 5 ohms resistor using Thevenins theorem



6. Verify Tellegens theorem for the given circuit



UNIT–IV

7. Find Z parameters for the given network

8. Find Y parameters for the given network

- 9. a) Explain self and mutual inductance in coupled magnetic circuits.
 - b) What is a magnetic circuit? Compare magnetic circuit with an electrical circuit.

OR

10. A steel ring of 180 cm mean diameter has a cross sectional area of 250 mm². Flux developed in the ring is 250 micro webers. When a 4000 turns coil carries certain current. Calculate (i) m.m.f required (ii) Reluctance (iii) current in the coil. Assume relative permeability of steel is 1100.

	Hal	I Ticket Number :										_		
	Coc	le: 7GC32					[R-17	
		II B.Tech. I Se	mester	Sup	pler	nent	tary	Exa	min	ation	is Feb	rua	ry 2021	
				gine		-								
	Max	x. Marks: 70 Answer all five uni		Con posinç			estior				nit (5 x]4 =	Time: 3 Hours 70 Marks)	
					U	NIT-I	l							
1.	a)	Find the real root of	f equatio	$1x^3$	x-1	l=0b	y bis	ectio	n me	thod.				7M
	b)	Using Taylor's se	ries met	nod, d	comp	oute	the \	value	of	y at x	x=0.2 1	from	$\frac{dy}{dx} = x + y;$	
		y(0)=1.												7M
2			_			OI				_				
2.	a)	Find a real root of to four decimal place	•	tion 3	bx =	cos	x + 1	by N	ewto	n-Rap	hson's	met	hod correct	7M
	b)	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ v	vith initial	condit	tion y	y = 1 a	x =	0.Fii	nd y f	or x =	0.1 by	Eule	r's method.	7M
				_	L	NIT-I								
3.	a)	Using Newton's for	1	-					-		1			
		x F(x)	1.1 0.2		1. 0.6			.5 25		1.7 .89	1.9 2.6			
		Obtain the value of				55	1	20	·	.00	2.0	•		7M
	b)	Find the first and se	. ,			the f	unctio	on tal	oulat	ed bel	ow at tl	ne po	pint x = 1.5	
		X	1.5	2	.0	2.	5	3.0)	3.5	4	.0		
		У	3.375	7	.0	13.6		24.	0	38.87	5 59	0.0		7M
4.	a)	Evaluate f(10) give interpolation.						= 1, 7	' , 15	respe	ectively	. Use	e Lagrange	7M
	b)	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$	by Simp	son's	1/3 ru	ule.								7M
					U	NIT-II								
5.	a)	By the method of le	ast squa	res, fii	nd th					est fits	the fol	lowir	ng data.	
			>	(14	2	3	4	5					714
	b)	Form the partial	differer			27 tion	40 bv	55 elimii	68 natin		e arbit	rarv	constants	7M
	0)	$x^{2} + y^{2} + (z - c)^{2} =$			oquu		^o y	O	latin	g the		rary	conotanto	714
						O	R							7M
6.	a)	Form the partial or arbitrary functions)		,		ns (b	y elir		ing t	the ar	bitrary	con	stants and	7M
	b)	Solve $p \tan x + q \tan x$,								7M
	·													

Code: 7GC32

- UNIT-IV 7. a) Find the Fourier series expansion for f(x) = f - x in 0 < x < f7M b) Expand $f(x) = \cos x, 0 < x < f$ in half range sine series. 7M OR Determine the Fourier series for $f(x) = x \sin x$ in the interval 0 < x < 2f8. 14M UNIT-V a) Find the finite Fourier sine and cosine Transforms of f(x) defined by f(x) = 1 where 9. 0 < x < f7M
 - b) Find the Fourier sin and cosine transform of $f(x) = \frac{e^{-ax}}{x}, a > 0$
- Find the Fourier cosine transform of $f(x) = \frac{1}{1+r^2}$, hence, derive the Fourier sine 10.

transf 1+x

form of w(x) =
$$\frac{x}{1+x^2}$$

OR

14M

7M

<u> </u>	'od	e: 7G536	
C	Jue	Il B.Tech. I Semester Supplementary Examinations March 2021	
		Fluid Mechanics and Hydraulic Machines	
		(Electrical and Electronics Engineering)	
Ν	۸ax.	Marks: 70 Time: 3 Hou	Jrs
	/	Answer all five units by choosing one question from each unit (5 x 14 = 70 Marks)	

	-)		
1.	a)	Define the following properties of the fluid. i) Specific Weight ii) Specific Gravity iii) viscosity iv) Surface Tension	08
	b)	Calculate the Density, Specific weight and Specific gravity of One liter of liquid, which	00
	2)	weighs 7N.	06
		OR	
2.	a)	Explain the phenomenon of Surface Tension.	08
	b)	Find the surface tension in a soap bubble of 40mm diameter when the inside pressure	06
		is 2.5 N/m ² above atmospheric pressure.	
•	、		
3.	a)	Describe the Reynolds's experiment with neat sketch	07
	b)	Explain the TEL and HGL with neat sketch. OR	07
4.		The water is flowing through the taper pipe of length 100m having diameters 600mm at the upper end and 300mm at the lower end, at the rate of 50litres/sec. The pipe has the	
		slope of 1 in 30. Find the pressure at the lower end if the pressure at the higher end is	
		19.62 N/cm^2 .	14
		UNIT-III	
5.		Explain the elements of hydroelectric power station with neat sketch.	14
		OR	
6.		A jet of water of diameter 75 mm moving with a velocity of 25m/sec strikes a plate in	
		such a way that the angle between the jet and plate is 60°. Find the force exerted by	
		the jet on the plate (i) in the direction normal to the plate (ii) in the direction of the plate.	14
		UNIT-IV	
7.	a)	Explain the classification of turbines.	08
	b)	Define the various types of efficiencies of hydraulic turbines.	06
-		OR	_
8.	a)	Explain the Draft tube theory and list out its functions.	08
	b)	A water turbine has a velocity of 6 m/sec at the entrance to the draft tube and velocity	~
		of 1.2 m/sec at the exit. For friction losses of 0.1m and tail water 5m below the entrance to the draft tube, find the pressure head at the entrance.	06
		UNIT-V	
9.		Define centrifugal pump. Explain the working of single stage centrifugal pump with neat	
9.		sketch.	14
		OR	•
0.		A centrifugal pump having outer diameter equal to two times the inner diameter and	
		running at 1000 r.p.m. works against a total head of 40 m. The velocity of flow through	
		the impeller is constant and equal to 2.5 m/sec. The vanes are set back at an angle of	
		40° at outlet. If the outer diameter of the impeller is 500mm and width at the outlet is	
		50mm, determine: (i) Vane angle at inlet (ii) Work done by the impeller on water per	1
		second (iii) manometric efficiency.	14

	Hall	Ticket Number : R-17
(Cod	e: 7G232
		II B.Tech. I Semester Supplementary Examinations March 2021
		Switching Theory and Logic Design
		(Electrical and Electronics Engineering)
1		Time: 3 Hours 50 swer any five full questions by choosing one question from each unit (5 x 14 = 70 Marks)
	7 \1 1	
		UNIT–I
1.	a)	Solve the Following
		i) $(456.25)_{10} = (\)_{16}$
		ii) $(1011101.001)_2 = (\)_8$
		iii) $(21C.DC)_{16} = ()_2$
		iv) $(56.24)_8 = (\)_{10}$
	b)	Represent +25 and -25 in sign magnitude, sign 1's complement and sign 2's complement representation.
	,	OR
2.	a)	
	b)	Represent the Decimal number 8620 in i) BCD ii) Excess 3 iii) Gray Codes.
		UNIT-II
3.	a)	Simplify the the following Boolean functions to minimum number of literals.
		i) $xy+y'z'+wxz'$ ii) $w'x'+x'y'+w'z'+yz$
	b)	What is the difference between canonical form and standard form? Which form is preferable while implementing a Boolean function with gates?
4.		Simplify the following Boolean expressions using K-map and implement them
		using NOR gates:
		i. $F(A, B, C, D) = AB'C' + AC + A'CD'.$
		ii. $F(W, X, Y, Z) = W'X'Y'Z' + WXY'Z' + W'X'YZ + WXYZ.$
		UNIT–III
5.	a)	Implement full adder using two half adders. Give the internal logic function and truth table.
	b)	Compare Programmable logic devices.
•		OR
6.		Design a combinational circuit using PROM. The circuit accepts a 3 bit binary number and generates its equivalent excess 3 code.
		UNIT-IV
7.	a)	Distinguish between combinational and sequential circuits.
	b)	Explain clocked sequential circuits with an example.
	5)	OR
8.		Design a sequential circuit with two D-Flip-Flops A and B and one input x. When x=0, the state
		of the circuit remains the same. When x=1, the circuit goes through the state transitions from
		00 to 01 to 11 to 10 back to 00 and repeats.
_		UNIT-V
9.	a)	Compare between Moore and Mealy machine.
	b)	Discuss the various blocks ASM chart.
0		OR
0.		What are the conditions for the two machines are to be equivalent? For the machine giver below, find the equivalence partition and a corresponding reduced machine in standard form.
		PS NS,Z

\mathbf{PS}	NS	s,Z
	X=0	X=1
Α	F,0	$^{\mathrm{B},1}$
В	$_{\mathrm{G},0}$	A,1
С	$_{\rm B,0}$	C,1
D	$^{\rm C,0}$	$^{\rm B,1}$
E	D,0	A,1
F	$^{\rm E,1}$	F,1
G	$^{\rm E,1}$	$^{\rm G,1}$
