Code: 7G334

II B.Tech. I Semester Supplementary Examinations August 2021
Analog Electronics-I
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Explain about Two stage RC-coupled amplifier.
b) What is the significance of 3 dB Bandwidth?

OR

2. Draw and discuss the Frequency response of RC Coupled, Direct coupled and Transformer coupled amplifiers with relevant diagrams.

UNIT-II

3. a) What is Sampling. Explain about it with neat diagrams.
b) What is mixing? Describe about it with neat diagrams.

OR

4. What are the General characteristics of negative feedback amplifiers and Explain about them (Any Four)

UNIT-III

5. a) Derive the expressions of frequency of oscillations of a Colpitts oscillator with relevant diagram.
b) A Wein bridge oscillator is used to operate at $f 0=10 \mathrm{KHz}$. If the value of R is 100 K , find
the value of the capacitor C .
6. a) List out the classification of oscillators
b) Explain about the crystal oscillators and mention their advantages

UNIT-IV

7. a) What is the Max power dissipation per each transistor and derive the expression for it.
b) Distinguish between Class-A and Class-B Power amplifiers.
8. a) For a class-B Power Amplifier providing a 22 V Peak signal to an 8 load and a power supply of $\mathrm{VCC}=25 \mathrm{~V}$. determine:(a)Input Power, $\mathrm{Pi}(\mathrm{dc})$ (b)Output Power, $\mathrm{Po}(\mathrm{ac})$ and (c)Circuit efficiency, \% η.
b) Define the terms i) DC Power Input
ii) AC Power Output
iii) Efficiency

UNIT-V

9. a) Define linear wave shaping? Write short notes on Integrator and Differentiator circuits.
b) What are the applications of Linear wave shaping.

OR

10. a) Discuss the response of R-C High Pass circuit for square wave input, also sketch necessary
waveforms.
b) Note about the negative reference value based clippers.

II B.Tech. I Semester Supplementary Examinations August 2021
DC Machines
(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) What are the lap and wave windings and compare them.
b) An 8-pole lap wound DC. Generator has 120 slots having 4 conductors per slot. If flux per pole is 0.06 Wb , calculate the speed of the generator for giving 240 V on open circuit.

OR

2. a) Derive the EMF equation of DC generator.
b) A 4-Pole, wave wound d.c. shunt generator has a useful flux per pole of 0.07 Wb . Calculate the induced e.m.f. when running at 900 r.p.m

UNIT-II

3. a) Write brief note on the losses in DC machines
b) A 4-pole wave wound dc machine has an armature of 25 cm diameter and runs at 1200 rpm . If armature current is 160 A , thickness of brush is 12 mm and the self-inductance of each armature coil is 0.14 mH , calculate the average emf induced in each coil during commutation.

OR

4. a) Discuss the methods to minimize the effect of armature reaction.

7M
b) A 4 -pole, long shunt lap wound generator supplies 25 KW at a terminal voltage of 500 V . The armature resistance is 0.05 ohms and shunt field resistance is 180 ohms. The brush drop may be taken as 1V.Determine the EMF generated. Also calculate the number of conductors if the speed is 1200 r.p.m and flux per pole is 0.02 weber.

UNIT-III
5. The open-circuit characteristic of a separately-excited DC generator driven at 1000 rpm. is as follows:

Field current :	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
E.M.F. volts :	30.0	55.0	75.0	90.0	100.0	110.0	115.0	120.0

If the machine is connected as shunt generator and driven at 1000 rpm . and has a field resistance of 100 , find (a) Open-circuit voltage and exciting current (b) The critical resistance and speed.

OR

6. a) State the requirements of voltage build up in self-excited DC generator.
b) Explain the use of equalizer bar and cross connection of field windings

UNIT-IV

7. a) Derive the expression for torque developed by a DC motor.
b) What is back emf? Explain its significance.

OR

8. A DC shunt motor runs at 1000 rpm on 220 V supply. Its armature and field resistances are 0.50 hm and 110 ohm respectively and the total current taken from the supply is 26 A . It is desired to reduce the speed to 750 rpm keeping the armature and field currents same. What resistancce should be inserted in the armature circuit?

UNIT-V
9. Explain with a circuit diagram how efficiency is determined for machines by Hopkinson's test.

OR

10. a) Explain with diagram the brake test on a DC motor 7M
b) Mention the merits and demerits of Swinburne's test. Why this test cannot be perfumed on a series motor.
\square
Code: 7G233
II B.Tech. I Semester Supplementary Examinations August 2021

Electrical Circuits-I

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define duality and describe the procedure to draw the dual network.
b) If $R_{\text {eq }}=50$ ohms between a and b in the circuit find R.

2. Find $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} for the given network shown in figure below.

UNIT-II

3. a) Define the Q factor and derive the necessary expression showing the relation between Q factor, band width and selectivity of frequencies at resonance.
b) Derive the expression for resonant frequency for a series RLC circuit.

OR

4. a) Show that current lags voltage in RL series circuit
b) Define and determine the average and RMS values of a sinusoidal voltage.

UNIT-III
5. a) State and explain Tellegens theorem with an example.
b) Verify reciprocity theorem for the given circuit.

OR
6. a) State and explain Millimans theorem
b) Find I through 2 ohms resistor using MIllimans theorem

UNIT-IV

7. a) Find ABCD and h parameters for the following network

OR
8. Find Z and Y parameters for the following network.

9. a) Develop an expression for equivalent inductance of two coupled coils connected in parallel with mutual inductance.
b) Explain the importance of dot convention in coupled circuits.

OR

10. a) Write the procedure to analyze a parallel magnetic circuit.
b) Two coupled coils with $L_{1}=0.02 \mathrm{H}, \mathrm{L}_{2}=0.01 \mathrm{H}$ and $\mathrm{k}=0.5$ are connected in four ways series aiding, series opposing, parallel aiding and parallel opposing. What are the four equivalent inductances?

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to All Branches)
Time: 3 Hours
Max. Marks: 70
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)
$* * * * * * * * *$

UNIT-I

1. a) Using the bisection method, find a real root of the equation $\cos x=x e^{x}$ correct to three decimal places.
b) Apply fourth order Runge-Kutta method to $\frac{d y}{d x}=3 x+\frac{1}{2} y, y(0)=1$ determine $y(0.1)$ correct to four decimal places.

OR

2. Find the real root of the equation $x e^{x}=3$ by Regular-falsi method.

UNIT-II

3. Using Lagrange formula find $f(4)$. Given

x	0	2	3	6
y	-4	2	14	158

OR
4. Evaluate $\int_{0}^{1} \sqrt{1+x^{3}} d x$ taking $\mathrm{h}=0.1$ Using (i) Simpson's $1 / 3$ rd rule (ii) Trapezoidal rule.

UNIT-III

5. Fit a second degree parabola to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21
OR					

6. Form a partial differential equation from $z=f(x+y)$.

UNIT-IV

7. Obtain the Fourier series for $f(x)=x-x^{2}$ in the interval $[-\pi, \pi]$. Hence show that
$\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\ldots=\frac{\pi^{2}}{12}$

OR

8. Find the half range cosine series for the function $f(t)=t-t^{2}$, in $0<t<1$

UNIT-V

9. Find the Fourier cosine transform of $f(x)=e^{-a x}(x>0, a>0)$.

OR

10. Find the Fourier transform of $f(x)$ given by $f(x)=\left\{\begin{array}{l}1, \text { for }|x|<1 \\ 0, \text { for }|x|>1\end{array}\right.$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$

II B.Tech. I Semester Supplementary Examinations August 2021

Fluid Mechanics and Hydraulic Machines

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. a) Define the following,
i) Steam Line ii) Streak Line iii) stream Tube
b) Define the rate of flow and derive the equation of continuity for one dimensional flow. 8 M

OR
2. a) Explain the various types of fluid flows.
b) The diameters of a pipe at sections 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is $5 \mathrm{~m} / \mathrm{sec}$. Determine also the velocity at section 2.

UNIT-II

3. Define the following with suitable examples.
i) Body forces
ii) Surface forces
iii) Line forces.

OR

4. A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respectively is used to measure the flow of water. The reading of differential manometer connected to the inlet and the throat is 20 cm of mercury. Determine the rate of flow. Tale $\mathrm{C}_{\mathrm{d}}=0.98$.

UNIT-III

5. Derive the expression for a force exerted by jet of water on a stationary inclined plate.

OR

6. A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{sec}$ perpendicular to the plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{sec}$. Find i) the force on the plate ii) the work done ii) the efficiency of the jet.

UNIT-IV

7. a) Explain the classification of turbines.
b) Define the various types of efficiencies of hydraulic turbines.

OR

8. A Pelton wheel has a mean bucket speed of $10 \mathrm{~m} / \mathrm{sec}$ with a jet water flowing at the rate of 700 liters per second under a head of 30 meters. The bucket deflects the jet at angle of 160°. Calculate the power given by the water to the runner and the hydraulic efficiency of the turbine. Assume coefficient of velocity as 0.98 .

UNIT-V

9. a) Explain the working principle of single acting reciprocating pump with neat sketch.
b) A single acting reciprocating pump running at 50 r.p.m., delivers $0.01 \mathrm{~m}^{3} / \mathrm{sec}$ of water. The diameter of the piston is 200 mm and stroke length 400 mm . Determine: i) The theoretical discharge of pump ii) coefficient of discharge iii) slip and percentage of slip of the pump.

OR

10. a) Describe the meaning of NPSH and derive an expression for it. 7M
b) Explain about the multistage centrifugal pumps with neat sketches 7M

Code: 7G232
II B.Tech. I Semester Supplementary Examinations August 2021

Switching Theory and Logic Design

(Electrical and Electronics Engineering)
Max. Marks: 70
Time: 3 Hours
Answer any five full questions by choosing one question from each unit ($5 \times 14=70$ Marks)

UNIT-I

1. i) Convert the hexadecimal number 68BE to binary and convert it from binary to octal ii) Express the number $(26.24)_{8}$ in Decimal
iii) Implement AND Gate using NAND Gates.

OR

2. The two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction

$$
\begin{array}{ll}
\text { i) } X-Y & \text { ii) Y-X. by using 2's complement. }
\end{array}
$$

UNIT-II

3. Convert the given expressions in to standard SOP Form.
i) $F(A, B, C)=A+A B+C B$.
ii) $F(P, Q, R)=P Q+R+P R$.

OR

4. Realize the following expression using K-map $F=\Sigma m(0,1,2,4,5,6,9,11,12,13,14,15)$ and Implement the same using NOR logic.

UNIT-III

5. a) Draw and explain the block diagram of n-bit parallel adder.
b) What is programmable logic array? How it differs from PROM.

OR
6. Design 4×16 decoder using two 3×8 decoders with block diagram.

> UNIT-IV
7. a) Draw the logic symbols and truth tables of JK and T flip flop
b) Draw the logic Diagram truth table of SR Latch.

OR
8. Explain the operation of D Flip-Flop in detail

UNIT-V

9. a) Compare ASM Chart and the State Diagram.
b) Discuss mealy and Moore machine models of sequential machines.

OR

10. Convert the following Mealy machine into a corresponding Moore machine

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

