		Hall Ticket Number :														
		Code: 7G334		<u> </u>		I				I					R-17	7
	Ν	ll B.Tech. I Se Max. Marks: 70	(Ele	ectri	An cal o	alo and	g El Elec	ectr tron	oni ics E	cs-l ingir	neeri	ng))	-	Time: 3	
	/	Answer <i>any five</i> full qu	estic	ons b	y ch	oosir	-	****	Jesti	on fro	om e	each	n Ur	nit (:	5x14 = 70 №	larks)
1.	a)	Explain about Two stag	ge R	C–co	upleo	d am										10N
	, b)	What is the significanc	-		-		-									4N
							0	R								
2.		Draw and discuss the coupled amplifiers with	•		-	•		RC C	Coupl	ed, D)irect	cou	ple	d an	d Transform	ner 14M
							UNI	T–II								
3.	a)	What is Sampling. Exp	lain a	about	t it wi	th ne	eat di	agrar	ns.							7N
	b)	What is mixing? Descr	ibe a	bout	it wit	h nea		-	IS.							7N
4.		What are the Genera them (Any Four)	l cha	aracte	eristic	cs of	O l neg	-	feed	back	amp	olifier	rs a	and	Explain abo	out 14N
5.	a) b)	Derive the expression diagram. A Wein bridge oscillate the value of the capaci	or is	used		sy of		llatior			-					10N
							O	R								-110
6.	a)	List out the classification	on of	oscil	lators	S	•	-								6N
	b)	Explain about the cryst	tal os	scillat	ors a	ind m	nentio	on the	eir ad	vanta	ages					8N
							UNIT	- IV								
7.	a)	What is the Max power	r diss	sipatio	on pe	er ea	ch tra	nsist	or an	d de	rive t	he e	xpr	essio	on for it.	7N
	b)	Distinguish between C	lass-	A and	d Cla	iss-B	Pow	er an	nplifie	ers.						7N
8.	a)	For a class-B Power supply of VCC=25V.	det		•	•		2V P		•					•	
		(c)Circuit efficiency, %			. ::		Day		.1	:::\	Г #:~					
	b)	Define the terms i) DC	FOW	erin	put I	i) AU	FOM	er Ol	uput	III <i>)</i>		iency	ý			6N
							UNI	V– 7								
9.	a)	Define linear wave sha	ping	? Wri	ite sh	nort n	otes	on In	tegra	ator a	nd D	iffere	enti	ator	circuits.	8N
	b)	What are the application	ons o	f Line	ear w	ave	shap	ing.								6N
10.	a)	Discuss the response	of R-	C Hir	nh P≏	ass c	O l ircuit		quar	<u>.</u> Wav	/e inr	out s	also) ske	tch necess	arv
10.	aj	waveforms.	0111	- 1 110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.000	noun	101 3	yuun		, с п р	ישנ, כ				7N
	b)	Note about the negativ	e ref	erend	ce va	lue b	asec	l clipr	bers.							7N
	/						ب _	r r س								

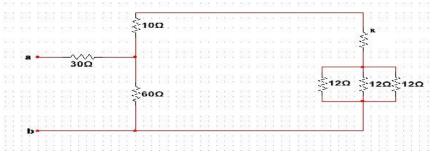
C	Code: 7G231	
C	II B.Tech. I Semester Supplementary Examinations August 2021	
	DC Machines	
	(Electrical and Electronics Engineering)	
	Max. Marks: 70 Time: 3 Hou	
F	Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks *********	S)
	UNIT–I	
a)	What are the lap and wave windings and compare them.	-
b)	An 8-pole lap wound DC. Generator has 120 slots having 4 conductors per slot. If flux per	
·	pole is 0.06Wb, calculate the speed of the generator for giving 240V on open circuit.	7
	OR	_
a)	Derive the EMF equation of DC generator.	7
b)	A 4-Pole, wave wound d.c. shunt generator has a useful flux per pole of 0.07Wb. Calculate	-
	the induced e.m.f. when running at 900 r.p.m	7
2)	UNIT-II Write brief note on the losses in DC machines	(
a) b)	A 4-pole wave wound dc machine has an armature of 25cm diameter and runs at 1200 rpm.	C
b)	If armature current is 160A, thickness of brush is 12mm and the self-inductance of each	
	armature coil is 0.14mH, calculate the average emf induced in each coil during	
	commutation.	8
	OR	_
a)	Discuss the methods to minimize the effect of armature reaction.	-
b)	A 4-pole, long shunt lap wound generator supplies 25KW at a terminal voltage of 500V. The armature resistance is 0.05 ohms and shunt field resistance is 180 ohms. The brush drop	
	may be taken as 1V.Determine the EMF generated. Also calculate the number of	
	conductors if the speed is 1200 r.p.m and flux per pole is 0.02weber.	-
	The open-circuit characteristic of a separately-excited DC generator driven at 1000 rpm. is	
	as follows:	
	Field current: 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6	
	E.M.F. volts : 30.0 55.0 75.0 90.0 100.0 110.0 115.0 120.0	
	If the machine is connected as shunt generator and driven at 1000 rpm. and has a field resistance of 100 , find (a) Open-circuit voltage and exciting current (b) The critical	
	resistance and speed.	14
	OR	
a)	State the requirements of voltage build up in self-excited DC generator.	-
b)	Explain the use of equalizer bar and cross connection of field windings	-
	UNIT-IV	
a)	Derive the expression for torque developed by a DC motor.	7
b)	What is back emf? Explain its significance.	-
	OR	
	A DC shunt motor runs at 1000rpm on 220V supply. Its armature and field resistances are 0.5ohm and 110ohm respectively and the total current taken from the supply is 26A. It is	
	desired to reduce the speed to 750rpm keeping the armature and field currents same. What	
	resistancce should be inserted in the armature circuit ?	14
	UNIT-V	
	Explain with a circuit diagram how efficiency is determined for machines by Hopkinson's test.	14
	OR	
a)	Explain with diagram the brake test on a DC motor	-
• •	Mention the merits and demerits of Swinburne's test. Why this test cannot be perfumed on a	
b)	series motor.	-

Hall Ticket Number :						
• • • • • • • • • • • • • • • • • • • •	<u> </u>					R-17

Code: 7G233

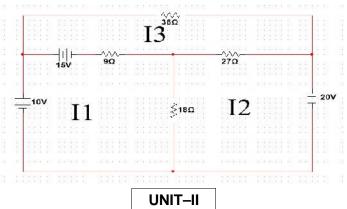
II B.Tech. I Semester Supplementary Examinations August 2021

Electrical Circuits-I


(Electrical and Electronics Engineering)

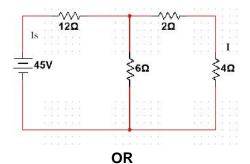
Max. Marks: 70

Time: 3 Hours Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ******

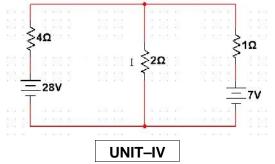


- Define duality and describe the procedure to draw the dual network. 1. a)
 - If R_{eq} =50 ohms between a and b in the circuit find R. b)

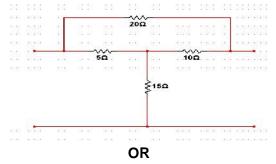
2. Find I_1, I_2 and I_3 for the given network shown in figure below.


- Define the Q factor and derive the necessary expression showing the relation between Q-3. a) factor, band width and selectivity of frequencies at resonance.
 - Derive the expression for resonant frequency for a series RLC circuit. b)

OR


- Show that current lags voltage in RL series circuit a) 4.
 - Define and determine the average and RMS values of a sinusoidal voltage. b)

UNIT-III


- State and explain Tellegens theorem with an example. 5. a)
 - Verify reciprocity theorem for the given circuit. b)

- 6. a) State and explain Millimans theorem
 - b) Find I through 2 ohms resistor using MIIlimans theorem

7. a) Find ABCD and h parameters for the following network

8. Find Z and Y parameters for the following network.

6.3 6.3 3	-			1-		
	δΩ		40	ž		
		\$31			~	1Ω
1111						
		U	NIT–V			

- 9. a) Develop an expression for equivalent inductance of two coupled coils connected in parallel with mutual inductance.
 - b) Explain the importance of dot convention in coupled circuits.

OR

- 10. a) Write the procedure to analyze a parallel magnetic circuit.
 - b) Two coupled coils with L₁=0.02 H, L₂=0.01 H and k=0.5 are connected in four ways series aiding, series opposing, parallel aiding and parallel opposing. What are the four equivalent inductances?

Hall Ticket Number :						
	<u> </u>					R-17

Code: 7GC32

II B.Tech. I Semester Supplementary Examinations August 2021

Engineering Mathematics-III

(Common to All Branches)

Max. Marks: 70 Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks) ********

UNIT–I

- 1. a) Using the bisection method, find a real root of the equation $\cos x = x e^x$ correct to three 7M decimal places.
 - b) Apply fourth order Runge-Kutta method to $\frac{dy}{dx} = 3x + \frac{1}{2}y$, y(0) = 1 determine y(0.1) correct to four decimal places. 7M

OR

2. Find the real root of the equation $xe^x = 3$ by Regular-falsi method. 14M

UNIT-II

3. Using Lagrange formula find f(4). Given

х	0	2	3	6
у	-4	2	14	158
		OR		

4. Evaluate $\int_{0}^{1} \sqrt{1 + x^3} dx$ taking h = 0.1 Using (i) Simpson's 1/3 rd rule (ii) Trapezoidal rule.

UNIT-III

5. Fit a second degree parabola to the following data by the method of least squares

,		0	D		
V	14	17	23	25	21
х	10	12	15	23	20

6. Form a partial differential equation from z = f(x + y).

UNIT–IV

7. Obtain the Fourier series for $f(x) = x - x^2$ in the interval [-f, f]. Hence show that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \dots = \frac{f^2}{12}$$
14M

- 8. Find the half range cosine series for the function $f(t) = t t^2$, in 0 < t < 1 14M
- 9. Find the Fourier cosine transform of $f(x) = e^{-ax} (x > 0, a > 0)$. 14M

10. Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, \text{ for } |x| < 1 \\ 0, \text{ for } |x| > 1 \end{cases}$ hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ 14M

14M

14M

		Hall Ticket Number :	
		Code: 7G536	
		II B.Tech. I Semester Supplementary Examinations August 2021	
		Fluid Mechanics and Hydraulic Machines	
		(Electrical and Electronics Engineering)	
		Time: 3 Hou Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks	
	,	********	
	,	UNIT-I	
1.	a)	Define the following,i) Steam Line ii) Streak Line iii) stream Tube	6M
	b)	Define the rate of flow and derive the equation of continuity for one dimensional flow.	8M
		OR	
2.	a)	Explain the various types of fluid flows.	8M
	b)	The diameters of a pipe at sections 1 and 2 are 10cm and 15cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is 5 m/sec. Determine also the velocity at section 2.	6M
		UNIT–II	
3.		Define the following with suitable examples.	
		i) Body forces ii) Surface forces iii) Line forces.	14M
4.		OR A horizontal venturimeter with inlet and throat diameters 30cm and 15cm respectively is	
4.		used to measure the flow of water. The reading of differential manometer connected to the inlet and the throat is 20 cm of mercury. Determine the rate of flow. Tale C_d =0.98.	14M
5.		UNIT–III Derive the expression for a force exerted by jet of water on a stationary inclined plate. OR	14M
6.		A nozzle of 50 mm diameter delivers a stream of water at 20 m/sec perpendicular to the	
		plate that moves away from the jet at 5m/sec. Find i) the force on the plate ii) the work	
		done ii) the efficiency of the jet.	14M
7		UNIT-IV	014
7.	a) b)	Explain the classification of turbines. Define the various types of efficiencies of hydraulic turbines.	8M 6M
	b)	OR	OIVI
8.		A Pelton wheel has a mean bucket speed of 10m/sec with a jet water flowing at the rate	
		of 700 liters per second under a head of 30 meters. The bucket deflects the jet at angle	
		of 160°. Calculate the power given by the water to the runner and the hydraulic	
		efficiency of the turbine. Assume coefficient of velocity as 0.98.	14M
		UNIT–V	
9.	a)	Explain the working principle of single acting reciprocating pump with neat sketch.	7M
	b)	A single acting reciprocating pump running at 50 r.p.m., delivers 0.01 m ³ /sec of water. The diameter of the piston is 200 mm and stroke length 400 mm. Determine: i) The theoretical discharge of pump ii) coefficient of discharge iii) slip and percentage of slip of	
		the pump.	7M
		OR	
10.	a)	Describe the meaning of NPSH and derive an expression for it.	7M
	b)	Explain about the multistage centrifugal pumps with neat sketches	7M

|--|

Code: 7G232

Max. Marks: 70

II B.Tech. I Semester Supplementary Examinations August 2021

Switching Theory and Logic Design

(Electrical and Electronics Engineering)

Time: 3 Hours

Answer any five full questions by choosing one question from each unit (5x14 = 70 Marks)

UNIT–I

i) Convert the hexadecimal number 68BE to binary and convert it from binary to octal
 ii) Express the number (26.24)₈ in Decimal
 iii) Implement AND Gate using NAND Gates.

OR

The two binary numbers X=1010100 and Y=1000011, perform the subtraction

 X-Y
 Y-X. by using 2's complement.

UNIT–II

3. Convert the given expressions in to standard SOP Form.
i) F(A,B,C) = A+AB+CB. ii) F(P,Q,R) = PQ+R+PR.

OR

4. Realize the following expression using K-map F = m(0,1,2,4,5,6,9,11,12,13,14,15) and Implement the same using NOR logic.

UNIT-III

- 5. a) Draw and explain the block diagram of n-bit parallel adder.
 - b) What is programmable logic array? How it differs from PROM.

OR

6. Design 4x16 decoder using two 3x8 decoders with block diagram.

UNIT–IV

- 7. a) Draw the logic symbols and truth tables of JK and T flip flop
 - b) Draw the logic Diagram truth table of SR Latch.

OR

8. Explain the operation of D Flip-Flop in detail

UNIT-V

- 9. a) Compare ASM Chart and the State Diagram.
 - b) Discuss mealy and Moore machine models of sequential machines.

OR

10. Convert the following Mealy machine into a corresponding Moore machine

PS	NS	S,Z
	X=0	X=1
Α	$^{\rm C,0}$	$^{\mathrm{B,0}}$
В	A,1	D,0
С	B,1	A,1
D	D,1	$^{\rm C,0}$